Wave-function extreme value statistics in Anderson localization

被引:3
作者
Falcao, P. R. N. [1 ,2 ]
Lyra, M. L. [1 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072900 Maceio, Alagoas, Brazil
[2] Jagiellonian Univ Krakow, Inst Theoret Phys, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
RANDOM BAND MATRICES; SCALING PROPERTIES; TRANSITION; DIFFUSION; ABSENCE; MODEL;
D O I
10.1103/PhysRevB.106.184207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a disordered one-dimensional tight-binding model with power-law decaying hopping amplitudes to disclose wave-function maximum distributions related to the Anderson localization phenomenon. Deeply in the regime of extended states, the wave-function intensities follow the Porter-Thomas distribution while their maxima assume the Gumbel distribution. At the critical point, distinct scaling laws govern the regimes of small and large wave-function intensities with a multifractal singularity spectrum. The distribution of maxima deviates from the usual Gumbel form and some characteristic finite-size scaling exponents are reported. Well within the localization regime, the wave-function intensity distribution is shown to develop a sequence of pre-power-law, power-law, exponential, and anomalous localized regimes. Their values are strongly correlated, which significantly affects the emerging extreme values distribution.
引用
收藏
页数:8
相关论文
共 41 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   WEAK LOCALIZATION AND ANHARMONICITY OF PHONONS [J].
AKKERMANS, E ;
MAYNARD, R .
PHYSICAL REVIEW B, 1985, 32 (12) :7850-7862
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[5]   Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime [J].
Bandyopadhyay, Jayendra N. ;
Gong, Jiangbin .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (10)
[6]   Algebraic localization from power-law couplings in disordered quantum wires [J].
Botzung, Thomas ;
Vodola, Davide ;
Naldesi, Piero ;
Muller, Markus ;
Ercolessi, Elisa ;
Pupillo, Guido .
PHYSICAL REVIEW B, 2019, 100 (15)
[7]   ANDERSON LOCALIZATION AND BREAKDOWN OF HYDRODYNAMICS IN RANDOM FERROMAGNETS [J].
BRUINSMA, R ;
COPPERSMITH, SN .
PHYSICAL REVIEW B, 1986, 33 (09) :6541-6544
[8]   DIRECT DETERMINATION OF THE F(ALPHA) SINGULARITY SPECTRUM [J].
CHHABRA, A ;
JENSEN, RV .
PHYSICAL REVIEW LETTERS, 1989, 62 (12) :1327-1330
[9]   Anomalously large critical regions in power-law random matrix ensembles -: art. no. 056601 [J].
Cuevas, E ;
Gasparian, V ;
Ortuño, M .
PHYSICAL REVIEW LETTERS, 2001, 87 (05) :056601/1-056601/4
[10]  
de Haan L., 2006, Extreme Value Theory. An Introduction