High-power portable terahertz laser systems

被引:284
作者
Khalatpour, Ali [1 ,2 ]
Paulsen, Andrew K. [1 ,2 ]
Deimert, Chris [3 ]
Wasilewski, Zbig R. [3 ,4 ,5 ,6 ]
Hu, Qing [1 ,2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Univ Waterloo, Dept Phys & Astron, Waterloo, ON, Canada
[5] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON, Canada
[6] Univ Waterloo, Inst Quantum Comp, Waterloo, ON, Canada
基金
美国国家航空航天局; 加拿大自然科学与工程研究理事会;
关键词
QUANTUM-CASCADE-LASER; OPERATION;
D O I
10.1038/s41566-020-00707-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called 'THz gap' between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at similar to 4 THz) with a maximum operating temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector.
引用
收藏
页码:16 / 20
页数:5
相关论文
共 42 条
[1]   Two-well terahertz quantum cascade lasers with suppressed carrier leakage [J].
Albo, Asaf ;
Flores, Yuri V. ;
Hu, Qing ;
Reno, John L. .
APPLIED PHYSICS LETTERS, 2017, 111 (11)
[2]   Room temperature negative differential resistance in terahertz quantum cascade laser structures [J].
Albo, Asaf ;
Hu, Qing ;
Reno, John L. .
APPLIED PHYSICS LETTERS, 2016, 109 (08)
[3]   Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers [J].
Albo, Asaf ;
Hu, Qing .
APPLIED PHYSICS LETTERS, 2015, 107 (24)
[4]   Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation [J].
Belkin, Mikhail A. ;
Capasso, Federico ;
Belyanin, Alexey ;
Sivco, Deborah L. ;
Cho, Alfred Y. ;
Oakley, Douglas C. ;
Vineis, Christopher J. ;
Turner, George W. .
NATURE PHOTONICS, 2007, 1 (05) :288-292
[5]   Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas [J].
Berry, Christopher W. ;
Hashemi, Mohammad R. ;
Jarrahi, Mona .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[6]   Thermoelectrically cooled THz quantum cascade laser operating up to 210K [J].
Bosco, L. ;
Franckie, M. ;
Scalari, G. ;
Beck, M. ;
Wacker, A. ;
Faist, J. .
APPLIED PHYSICS LETTERS, 2019, 115 (01)
[7]   Terahertz laser frequency combs [J].
Burghoff, David ;
Kao, Tsung-Yu ;
Han, Ningren ;
Chan, Chun Wang Ivan ;
Cai, Xiaowei ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
NATURE PHOTONICS, 2014, 8 (06) :462-467
[8]   Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers [J].
Chan, Chun Wang I. ;
Albo, Asaf ;
Hu, Qing ;
Reno, John L. .
APPLIED PHYSICS LETTERS, 2016, 109 (20)
[9]   Detection and manipulation of methylation in blood cancer DNA using terahertz radiation [J].
Cheon, Hwayeong ;
Paik, Jin Ho ;
Choi, Moran ;
Yang, Hee-Jin ;
Son, Joo-Hiuk .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Terahertz quantum cascade VECSEL with watt-level output power [J].
Curwen, Christopher A. ;
Reno, John L. ;
Williams, Benjamin S. .
APPLIED PHYSICS LETTERS, 2018, 113 (01)