High-order predictor-corrector algorithms

被引:47
作者
Lahman, H
Cadou, JM
Zahrouni, H
Damil, N
Potier-Ferry, M
机构
[1] Univ Metz, ISGMP, UMR CNRS 7554, LPMM, F-57045 Metz 01, France
[2] Univ Hassan 2, Fac Sci Ben MSik, Lab Calcul Sci Mecan, Casablanca, Morocco
关键词
perturbation techniques; prediction-correction algorithms; finite element method; Pade approximants; thin shells; Navier-Stokes equations;
D O I
10.1002/nme.524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New predictor-corrector algorithms are presented for the computation of solution paths of non-linear partial differential equations. The predictors and the correctors are based on perturbation techniques and Pade approximants. This extends the Asymptotic Numerical Method (ANM), which is an efficient high-order continuation technique without corrector. The efficiency and the reliability of the new technique are assessed by several examples within thin shell theory and Navier-Stokes equations. Many variants have been tested to establish an optimal algorithm. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 50 条
[31]   Bijective and Coarse High-Order Tetrahedral Meshes [J].
Jiang, Zhongshi ;
Zhang, Ziyi ;
Hu, Yixin ;
Schneider, Teseo ;
Zorin, Denis ;
Panozzo, Daniele .
ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04)
[32]   High-order FEM analysis of electromagnetic fields [J].
Rafajdus, P ;
Kostecky, P ;
Hrabovcová, V ;
Kohút, I .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2000, 19 (02) :323-331
[33]   Comparison of high-order curved finite elements [J].
Sevilla, Ruben ;
Fernandez-Mendez, Sonia ;
Huerta, Antonio .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (08) :719-734
[34]   Development of a high-order solver for blood flow [J].
Khurshid, Hassan ;
Hoffmann, Klaus A. .
ENGINEERING WITH COMPUTERS, 2015, 31 (01) :51-71
[35]   A hybrid high-order method for the Sobolev equation [J].
Xie, Chun-Mei ;
Feng, Min-Fu ;
Luo, Yan .
APPLIED NUMERICAL MATHEMATICS, 2022, 178 :84-97
[36]   Orthogonalization in high-order finite element method [J].
Jaskowiec, Jan ;
Plucinski, Piotr .
COMPUTERS & STRUCTURES, 2025, 311
[37]   A high-order incompressible flow solver with WENO [J].
Zhang, Ju ;
Jackson, Thomas L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) :2426-2442
[38]   High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows [J].
Lv, Yu ;
Ihme, Matthias .
ACTA MECHANICA SINICA, 2017, 33 (03) :486-499
[39]   A High-Order Direct Discontinuous Galerkin Method for Variable Density Incompressible Flows [J].
Zhang, Fan ;
Liu, Tiegang .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (03) :850-877
[40]   Modeling the Solar Corona with an Implicit High-order Reconstructed Discontinuous Galerkin Scheme [J].
Liu, XiaoJing ;
Feng, Xueshang ;
Zhang, Man ;
Zhao, Jingmin .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 265 (01)