High-order predictor-corrector algorithms

被引:47
作者
Lahman, H
Cadou, JM
Zahrouni, H
Damil, N
Potier-Ferry, M
机构
[1] Univ Metz, ISGMP, UMR CNRS 7554, LPMM, F-57045 Metz 01, France
[2] Univ Hassan 2, Fac Sci Ben MSik, Lab Calcul Sci Mecan, Casablanca, Morocco
关键词
perturbation techniques; prediction-correction algorithms; finite element method; Pade approximants; thin shells; Navier-Stokes equations;
D O I
10.1002/nme.524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New predictor-corrector algorithms are presented for the computation of solution paths of non-linear partial differential equations. The predictors and the correctors are based on perturbation techniques and Pade approximants. This extends the Asymptotic Numerical Method (ANM), which is an efficient high-order continuation technique without corrector. The efficiency and the reliability of the new technique are assessed by several examples within thin shell theory and Navier-Stokes equations. Many variants have been tested to establish an optimal algorithm. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 50 条
[21]   Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation [J].
Breuer, M. ;
De Nayer, G. ;
Muensch, M. ;
Gallinger, T. ;
Wuechner, R. .
JOURNAL OF FLUIDS AND STRUCTURES, 2012, 29 :107-130
[22]   A high-order Discontinuous Galerkin Chimera method for laminar and turbulent flows [J].
Wurst, Michael ;
Kessler, Manuel ;
Kraemer, Ewald .
COMPUTERS & FLUIDS, 2015, 121 :102-113
[23]   An Advection-Robust Hybrid High-Order Method for the Oseen Problem [J].
Aghili, Joubine ;
Di Pietro, Daniele A. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) :1310-1338
[24]   Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows [J].
Chapelier, J. -B. ;
Plata, M. de la Llave ;
Renac, F. ;
Lamballais, E. .
COMPUTERS & FLUIDS, 2014, 95 :210-226
[25]   High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics [J].
Nguyen, N. C. ;
Peraire, J. ;
Cockburn, B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) :3695-3718
[26]   A high-order hybridizable discontinuous Galerkin method for elliptic interface problems [J].
Huynh, L. N. T. ;
Nguyen, N. C. ;
Peraire, J. ;
Khoo, B. C. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (02) :183-200
[27]   High-order methods for hypersonic flows with strong shocks and real chemistry [J].
Peyvan, Ahmad ;
Shukla, Khemraj ;
Chan, Jesse ;
Karniadakis, George .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
[28]   A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows [J].
Knikker, R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (04) :403-427
[29]   Bifurcation points and bifurcated branches in fluids mechanics by high-order mesh-free geometric progression algorithms [J].
Rammane, Mohammed ;
Mesmoudi, Said ;
Tri, Abdeljalil ;
Braikat, Bouazza ;
Damil, Noureddine .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (03) :834-852
[30]   A High-Order Method for Weakly Compressible Flows [J].
Kaiser, Klaus ;
Schutz, Jochen .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (04) :1150-1174