Melting temperature depression due to the electronic spin transition of iron

被引:7
作者
Deng, Jie [1 ]
Lee, Kanani K. M. [1 ]
机构
[1] Yale Univ, Dept Geol & Geophys, New Haven, CT 06511 USA
关键词
Melting; spin transition; ferropericlase; bridgmanite; lower mantle; HIGH-PRESSURE; MANTLE; BRIDGMANITE; PEROVSKITE; FERROPERICLASE; EQUATION; (MG; FE)O; STATE; ELASTICITY; CROSSOVER;
D O I
10.2138/am-2019-6948
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The electronic spin transition of iron has been shown to strongly affect many thermoelastic properties of the host mineral. However, the response of melting temperatures to the spin transition remains largely unexplored. Here, we study the melting of lower mantle minerals, ferropericlase and bridgmanite, using Lindemann's Law. This empirical law predicts a negligible melting temperature depression for Earth-relevant bridgmanite but a substantial depression for Earth-relevant ferropericlase across the spin transition of iron, consistent with extant experimental results. This melting depression can be explained within the framework of Lindemann's Law for a Debye-like solid. The transition of iron from high-to low-spin configuration reduces the molar volume and the bulk modulus of the crystal, leading to a decrease in Debye frequency and consequently lowering the melting temperature. Thermodynamically, the melting depression likely derives from a more negative Margules parameter for a liquid mixture of high- and low-spin end-members as compared to that of a solid mixture. This melting depression across the spin transition of iron may be the process responsible for the formation of a deep molten layer during the crystallization of a magma ocean in the past, and a reduced viscosity layer at present.
引用
收藏
页码:1189 / 1196
页数:8
相关论文
共 61 条
[1]   Breakdown of intermediate range order in AsSe chalcogenide glass [J].
Ahmad, Azkar S. ;
Glazyrin, K. ;
Liermann, H. P. ;
Franz, H. ;
Wang, X. D. ;
Cao, Q. P. ;
Zhang, D. X. ;
Jiang, J. Z. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (14)
[2]   Ferrous iron diffusion in ferro-periclase across the spin transition [J].
Ammann, M. W. ;
Brodholt, J. P. ;
Dobson, D. P. .
EARTH AND PLANETARY SCIENCE LETTERS, 2011, 302 (3-4) :393-402
[3]  
Anderson OL, 1999, AM MINERAL, V84, P221
[4]  
Anderson OL, 1998, AM MINERAL, V83, P23
[5]  
Anderson OL., 1995, EQUATIONS STATE SOLI
[6]  
[Anonymous], 2006, THERMODYNAMICS MAT S
[7]   Iron partitioning in Earth's mantle:: Toward a deep lower mantle discontinuity [J].
Badro, J ;
Fiquet, G ;
Guyot, F ;
Rueff, JP ;
Struzhkin, VV ;
Vankó, G ;
Monaco, G .
SCIENCE, 2003, 300 (5620) :789-791
[8]   Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties [J].
Catalli, Krystle ;
Shim, Sang-Heon ;
Prakapenka, Vitali B. ;
Zhao, Jiyong ;
Sturhahn, Wolfgang ;
Chow, Paul ;
Xiao, Yuming ;
Liu, Haozhe ;
Cynn, Hyunchae ;
Evans, William J. .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 289 (1-2) :68-75
[9]   Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle [J].
Crowhurst, J. C. ;
Brown, J. M. ;
Goncharov, A. F. ;
Jacobsen, S. D. .
SCIENCE, 2008, 319 (5862) :451-453
[10]   Implications for the Melting Phase Relations in the MgO-FeO System at Core-Mantle Boundary Conditions [J].
Deng, Jie ;
Miyazaki, Yoshinori ;
Lee, Kanani K. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (02) :1294-1304