Second Hankel Determinant for a Certain Subclass of Bi-univalent Functions

被引:11
作者
Mustafa, Nizami [1 ]
Mrugusundaramoorthy, Gangadharan [2 ]
Janani, Thambidurai [2 ]
机构
[1] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
[2] VIT Univ, Sch Adv Sci, Vellore 632014, Tamil Nadu, India
关键词
Univalent function; analytic function; bi-univalent function; Hankel determinant; COEFFICIENT; INVERSE; BOUNDS;
D O I
10.1007/s00009-018-1165-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a subclass of analytic and bi-univalent functions in the open unit disk. Here, we give upper bound estimates for the second Hankel determinant of the functions that belong to this class. Some interesting applications and conclusions of the results obtained in this paper are also discussed.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Hankel determinant of a subclass of analytic and bi-univalent functions defined by means of subordination and q-differentiation [J].
Lasode, Ayotunde Olajide ;
Opoola, Timothy Oloyede .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02) :3105-3114
[22]   Bounds for the second Hankel determinant of certain univalent functions [J].
See Keong Lee ;
V Ravichandran ;
Shamani Supramaniam .
Journal of Inequalities and Applications, 2013
[23]   The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain [J].
Hari Mohan Srivastava ;
Gangadharan Murugusundaramoorthy ;
Teodor Bulboacă .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
[24]   Bounds for the second Hankel determinant of certain univalent functions [J].
Lee, See Keong ;
Ravichandran, V. ;
Supramaniam, Shamani .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[25]   Third Hankel Determinant for Ma-Minda Bi-univalent Functions [J].
Haiyan ZHANG ;
Huo TANG .
Journal of Mathematical Research with Applications, 2019, 39 (04) :361-377
[26]   Second Hankel Determinant for Bi-univalent Functions Associated with q-differential Operator [J].
Shrigan, Mallikarjun G. .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (05) :663-671
[27]   SECOND HANKEL DETERMINANT OF THE LOGARITHMIC COEFFICIENTS FOR A SUBCLASS OF UNIVALENT FUNCTIONS [J].
Srivastava, Hari mohan ;
Eker, Sevtap sumer ;
Seker, Bilal ;
Cekic, Bilal .
MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) :479-488
[28]   Hankel Determinant for a Subclass of Bi-Univalent Functions Defined by Using a Symmetric q-Derivative Operator [J].
Srivastava, H. M. ;
Altinkaya, Sahsene ;
Yalcin, Sibel .
FILOMAT, 2018, 32 (02) :503-516
[29]   Second Hankel Determinant for a Certain Subclass of Bi-Close to Convex Functions Defined by Kaplan [J].
Kanas, Stanislawa ;
Sivasankari, Pesse, V ;
Karthiyayini, Roy ;
Sivasubramanian, Srikandan .
SYMMETRY-BASEL, 2021, 13 (04)
[30]   Upper Bounds of the Third Hankel Determinant for Bi-Univalent Functions in Crescent-Shaped Domains [J].
Shakir, Qasim Ali ;
Tayyah, Adel Salim ;
Breaz, Daniel ;
Cotirla, Luminita-Ioana ;
Rapeanu, Eleonora ;
Sakar, Fethiye Muge .
SYMMETRY-BASEL, 2024, 16 (10)