From multilinear SVD to multilinear UTV decomposition

被引:2
作者
Vandecappelle, Michiel [1 ,2 ]
De Lathauwer, Lieven [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, Kasteelpk Arenberg 10, Bus 2446, B-3001 Leuven, Belgium
[2] KU Leuven Kulak, Grp Sci Engn & Technol, E Sabbelaan 53, B-8500 Kortrijk, Belgium
关键词
Tensor; Multilinear SVD; Subspace analysis; ven; ai); ALGORITHMS;
D O I
10.1016/j.sigpro.2022.108575
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Across a range of applications, low multilinear rank approximation (LMLRA) is used to compress large tensors into a more compact form, while preserving most of their information. A specific instance of LMLRA is the multilinear singular value decomposition (MLSVD), which can be used for multilinear principal component analysis (MLPCA). MLSVDs are obtained by computing SVDs of all tensor unfoldings, but, in practical applications, it is often not necessary to compute full SVDs. In this article, we therefore propose a new decomposition, called the truncated multilinear UTV decomposition (TMLUTVD). This is a tensor decomposition that is also multilinear rank-revealing, yet less expensive to compute than a truncated ML SVD (TML SVD); it can even be computed in a finite number of steps. We present its properties in an algorithm-independent manner. In particular, we derive bounds on the accuracy in function of the truncation level. Experiments illustrate the good performance in practice. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A multilinear unsupervised discriminant projections method for feature extraction
    Chen, Haiyan
    Qian, Chengshan
    Zheng, Hao
    Wang, Huan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 3857 - 3870
  • [42] Stability analysis of multilinear system using condition spectrum
    G. Krishna Kumar
    M. S. Akhitha
    [J]. Banach Journal of Mathematical Analysis, 2023, 17
  • [43] Improving efficiency in convolutional neural networks with multilinear filters
    Dat Thanh Tran
    Iosifidis, Alexandros
    Gabbouj, Moncef
    [J]. NEURAL NETWORKS, 2018, 105 : 328 - 339
  • [44] Multilinear polynomial systems: Root isolation and bit complexity
    Emiris, Ioannis Z.
    Mantzaflaris, Angelos
    Tsigaridas, Elias P.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2021, 105 : 145 - 164
  • [45] A multilinear discriminant subspace projection with orthogonalization for face recognition
    Xiong, Wei
    Zhang, Lefei
    Du, Bo
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2015, 40 (05): : 583 - 587
  • [46] Stability analysis of multilinear system using condition spectrum
    Kumar, G. Krishna
    Akhitha, M. S.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (01)
  • [47] Vector Aitken extrapolation method for multilinear PageRank computations
    Boubekraoui, Maryam
    Bentbib, Abdeslem Hafid
    Jbilou, Khalide
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 1145 - 1172
  • [48] CausalX: Causal eXplanations and Block Multilinear Factor Analysis
    Vasilescu, M. Alex O.
    Kim, Eric
    Zeng, Xiao S.
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10736 - 10743
  • [49] Multilinear Local Fisher Discriminant Analysis for Face Recognition
    Peng, Yucong
    Zhou, Peng
    Zheng, Hao
    Zhang, Baochang
    Yang, Wankou
    [J]. BIOMETRIC RECOGNITION, 2016, 9967 : 130 - 138
  • [50] Vector Aitken extrapolation method for multilinear PageRank computations
    Maryam Boubekraoui
    Abdeslem Hafid Bentbib
    Khalide Jbilou
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 1145 - 1172