APD profiles and transfinite asymptotic dimension

被引:3
作者
Orzechowski, Kamil [1 ]
机构
[1] Univ Rzeszow, Inst Math, 1 Prof S Pigon St, PL-35310 Rzeszow, Poland
关键词
Asymptotic dimension; Asymptotic property C; Asymptotic property D; APD profile;
D O I
10.1016/j.topol.2020.107394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the theory of APD profiles introduced by J. Dydak for infinity-pseudometric spaces ([3]). We connect them with transfinite asymptotic dimension defined by T. Radul ([4]). We give a characterization of spaces with transfinite asymptotic dimension at most omega + n for n is an element of omega and a sufficient condition for a space to have transfinite asymptotic dimension at most m center dot omega + n for m, n is an element of omega, using the language of APD profiles. This condition together with a result from [7] enables us to answer positively the question in [3, 5.15]. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
[31]   A new upper bound for the asymptotic dimension of RACGs [J].
Tselekidis, Panagiotis .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02) :338-349
[32]   METRIC SPACES WITH SUBEXPONENTIAL ASYMPTOTIC DIMENSION GROWTH [J].
Ozawa, Narutaka .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (02)
[33]   Universal spaces for asymptotic dimension via factorization [J].
Dydak, Jerzy ;
Levin, Michael ;
Siegert, Jeremy .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02) :391-402
[34]   Classification of metric spaces with infinite asymptotic dimension [J].
Wu, Yan ;
Zhu, Jingming .
TOPOLOGY AND ITS APPLICATIONS, 2018, 238 :90-101
[35]   Hyperbolic groups have finite asymptotic dimension [J].
Roe, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) :2489-2490
[36]   A new construction of universal spaces for asymptotic dimension [J].
Bell, G. C. ;
Nagorko, A. .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (01) :159-169
[37]   Asymptotic cones and Assouad-Nagata dimension [J].
Dydak, J. ;
Higes, J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :2225-2233
[38]   The asymptotic dimension of the first Grigorchuk group is infinity [J].
Smith, Justin .
REVISTA MATEMATICA COMPLUTENSE, 2007, 20 (01) :119-121
[39]   Bounded rigidity of manifolds and asymptotic dimension growth [J].
Chang, Stanley S. ;
Ferry, Steven ;
Yu, Guoliang .
JOURNAL OF K-THEORY, 2008, 1 (01) :129-144
[40]   Asymptotic dimension and coarse embeddings in the quantum setting [J].
Chavez-Dominguez, Javier Alejandro ;
Swift, Andrew T. .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (02) :545-565