Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas

被引:62
作者
Askari, S. [1 ]
Levchenko, I. [2 ,3 ]
Ostrikov, K. [2 ,3 ,4 ]
Maguire, P. [1 ]
Mariotti, D. [1 ]
机构
[1] Univ Ulster, NIBEC, Newtownabbey BT37 0QB, Antrim, North Ireland
[2] CSIRO Mat Sci & Engn, PNCA, Lindfield, NSW 2070, Australia
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
PLASMA; NANOCRYSTALS;
D O I
10.1063/1.4872254
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nucleation and growth of highly crystalline silicon nanoparticles in atmospheric-pressure low-temperature microplasmas at gas temperatures well below the Si crystallization threshold and within a short (100 mu s) period of time are demonstrated and explained. The modeling reveals that collision-enhanced ion fluxes can effectively increase the heat flux on the nanoparticle surface and this heating is controlled by the ion density. It is shown that nanoparticles can be heated to temperatures above the crystallization threshold. These combined experimental and theoretical results confirm the effective heating and structure control of Si nanoparticles at atmospheric pressure and low gas temperatures. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 39 条
[1]   PROBE THEORY - THE ORBITAL MOTION APPROACH [J].
ALLEN, JE .
PHYSICA SCRIPTA, 1992, 45 (05) :497-503
[2]   Nanoscience with non-equilibrium plasmas at atmospheric pressure [J].
Belmonte, T. ;
Arnoult, G. ;
Henrion, G. ;
Gries, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (36)
[3]   Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy [J].
Belostotskiy, Sergey G. ;
Ouk, Tola ;
Donnelly, Vincent M. ;
Economou, Demetre J. ;
Sadeghi, Nader .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
[4]   Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase [J].
Chiang, Wei-Hung ;
Richmonds, Carolyn ;
Sankaran, R. Mohan .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (03)
[5]   Model of grain charging in collisional plasmas accounting for collisionless layer [J].
D'yachkov, L. G. ;
Khrapak, A. G. ;
Khrapak, S. A. ;
Morfill, G. E. .
PHYSICS OF PLASMAS, 2007, 14 (04)
[6]   PARTICULATE TEMPERATURE IN RADIO-FREQUENCY GLOW-DISCHARGES [J].
DAUGHERTY, JE ;
GRAVES, DB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1993, 11 (04) :1126-1131
[7]   Group IV Nanoparticles: Synthesis, Properties, and Biological Applications [J].
Fan, Jiyang ;
Chu, Paul K. .
SMALL, 2010, 6 (19) :2080-2098
[8]   Analytical model of particle charging in plasmas over a wide range of collisionality [J].
Gatti, Marco ;
Kortshagen, Uwe .
PHYSICAL REVIEW E, 2008, 78 (04)
[9]   Size-dependent crystallization of Si nanoparticles [J].
Hirasawa, M ;
Orii, T ;
Seto, T .
APPLIED PHYSICS LETTERS, 2006, 88 (09)
[10]   Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets [J].
Hofmann, S. ;
van Gessel, A. F. H. ;
Verreycken, T. ;
Bruggeman, P. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (06)