A Sparse Representation-Based Label Pruning for Image Inpainting Using Global Optimization

被引:0
|
作者
Kim, Hak Gu [1 ]
Ro, Yong Man [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch EE, Daejeon, South Korea
关键词
Sparse representation; Label pruning; Image inpainting; Global optimization;
D O I
10.1007/978-3-319-24075-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new label pruning based on sparse representation in image inpainting. In this literature, the label indicates a small rectangular patch to fill the missing regions. Global optimization-based image inpainting requires heavy computational cost due to a large number of labels. Therefore, it is necessary to effectively prune redundant labels. Also, inappropriate label pruning could degrade the inpainting quality. In this paper, we adopt the sparse representation of label to obtain a few reliable labels. The sparse representation of label is used to prune the redundant labels. Sparsely represented labels as well as non-zero sparse labels with high similarity to the target region are used as reliable labels in global optimization based image inpainting. Experimental results show that the proposed method can achieve the computational efficiency and structurally consistency.
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [1] EM algorithm for sparse representation-based image inpainting
    Fadili, M
    Starck, JL
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1385 - 1388
  • [2] HYPERSPECTRAL IMAGE CLASSIFICATION USING SPARSE REPRESENTATION-BASED CLASSIFIER
    Tang, Yufang
    Li, Xueming
    Xu, Yan
    Liu, Yang
    Wang, Jizhe
    Liu, Chenyu
    Liu, Shuchang
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3450 - 3453
  • [3] Sparse representation-based hyperspectral image classification
    Hairong Wang
    Turgay Celik
    Signal, Image and Video Processing, 2018, 12 : 1009 - 1017
  • [4] Sparse representation-based hyperspectral image classification
    Wang, Hairong
    Celik, Turgay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (05) : 1009 - 1017
  • [5] Sparse representation-based image quality assessment
    Guha, Tanaya
    Nezhadarya, Ehsan
    Ward, Rabab K.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2014, 29 (10) : 1138 - 1148
  • [6] Object Image Inpainting Based on Sparse Representation
    Gao C.-Y.
    Xu X.-E.
    Luo Y.-M.
    Wang D.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (09): : 1953 - 1965
  • [7] SRNet: Sparse representation-based network for image denoising
    Sheng, Jiechao
    Lv, Guoqiang
    Wang, Zi
    Feng, Qibin
    DIGITAL SIGNAL PROCESSING, 2022, 130
  • [8] Criminisi-Based Sparse Representation for Image Inpainting
    Hu, Gaolong
    Xiong, Ling
    2017 IEEE THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2017), 2017, : 389 - 393
  • [9] IMAGE INPAINTING VIA SPARSE REPRESENTATION
    Shen, Bin
    Hu, Wei
    Zhang, Yimin
    Zhang, Yu-Jin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 697 - +
  • [10] Sparse Representation-Based LDCT Image Quality Assessment Using the JND Model
    Shen, Mo
    Sun, Rongrong
    Ye, Wen
    IEEE ACCESS, 2025, 13 : 10422 - 10431