Wave heave energy conversion using modular multistability

被引:44
作者
Harne, R. L. [1 ]
Schoemaker, M. E. [2 ]
Dussault, B. E. [1 ]
Wang, K. W. [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
关键词
Mobile wave energy converter; Multistability; Impulsive dynamics; Electromagnetic induction; MAGNET LINEAR GENERATOR;
D O I
10.1016/j.apenergy.2014.05.038
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In calm sea environments and for compact architectures, the power generation performance of wave energy converters may be drastically inhibited due to undesired dissipative effects in the conversion mechanisms. This research develops an alternative power take-off methodology to surmount these challenges and to enable practical wave energy conversion for mobile converter architectures that could power monitoring instrumentation or telecommunications. Building upon related research findings and engineering insights, the basis for energy conversion is the harnessing of impulsive kinetics induced as a multistable structure is extended and compressed. A prototype system is built and analyzed to evaluate the potential for this conversion framework. Composed of modular "cells", the chain-like platform exhibits an increased number of stable configurations with each additional unit cell. Extension and compression of one end of the multistable chain (representative of wave heaving) while the opposing end remains mostly fixed, excites high frequency inter-cell dynamics due to impulsive transitions amongst configurations that are converted to electric current through electromagnetic induction. An experimentally validated model is utilized to gain insight towards successful realization of the power conversion concept and design guidelines are derived to maximize performance and ensure viability. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 156
页数:9
相关论文
共 32 条
  • [1] Bastien Steven P., 2009, Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009, P3718, DOI 10.1109/ECCE.2009.5316189
  • [2] Machines and Drives Comparison for Low-Power Renewable Energy and Oscillating Applications
    Brekken, Ted K. A.
    Hapke, Hannes Max
    Stillinger, Chad
    Prudell, Joe
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (04) : 1162 - 1170
  • [3] Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators
    Chiba, S.
    Waki, M.
    Wada, T.
    Hirakawa, Y.
    Masuda, K.
    Ikoma, T.
    [J]. APPLIED ENERGY, 2013, 104 : 497 - 502
  • [4] Study of a longitudinal flux permanent magnet linear generator for wave energy converters
    Danielsson, O.
    Eriksson, M.
    Leijon, M.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (14) : 1130 - 1145
  • [5] Davis E.P., 2009, P ASME 2009 28 INT C
  • [6] A tubular-generator drive for wave energy conversion
    Delli Colli, Vincenzo
    Cancelliere, Piergiacomo
    Marignetti, Fabrizio
    Di Stefano, Roberto
    Scarano, Maurizio
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (04) : 1152 - 1159
  • [7] A Timoshenko beam model for cantilevered piezoelectric energy harvesters
    Dietl, J. M.
    Wickenheiser, A. M.
    Garcia, E.
    [J]. SMART MATERIALS AND STRUCTURES, 2010, 19 (05)
  • [8] A review of wave energy converter technology
    Drew, B.
    Plummer, A. R.
    Sahinkaya, M. N.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2009, 223 (A8) : 887 - 902
  • [9] Wave energy utilization: A review of the technologies
    Falcao, Antonio F. de O.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) : 899 - 918
  • [10] A review of wave-energy extraction
    Falnes, Johannes
    [J]. MARINE STRUCTURES, 2007, 20 (04) : 185 - 201