Upper cluster algebras and choice of ground ring

被引:5
|
作者
Bucher, Eric [1 ]
Machacek, John [2 ]
Shapiro, Michael [3 ]
机构
[1] Xavier Univ, Dept Math, Cincinnati, OH 45207 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
cluster algebras; upper cluster algebras; locally acyclic cluster algebras; BELAVIN-DRINFELD DATA; MINIMAL SIZE; SLN;
D O I
10.1007/s11425-018-9486-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We initiate a study of the dependence of the choice of ground ring on the problem on whether a cluster algebra is equal to its upper cluster algebra. A condition for when there is equality of the cluster algebra and upper cluster algebra is given by using a variation of Muller's theory of cluster localization. An explicit example exhibiting dependence on the ground ring is provided. We also present a maximal green sequence for this example.
引用
收藏
页码:1257 / 1266
页数:10
相关论文
共 50 条
  • [21] Schottky vertex operator cluster algebras
    Zuevsky, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (17):
  • [22] Factoriality and class groups of cluster algebras
    Elsener, Ana Garcia
    Lampe, Philipp
    Smertnig, Daniel
    ADVANCES IN MATHEMATICS, 2019, 358
  • [23] Tetrahedron equation and quantum cluster algebras
    Inoue, Rei
    Kuniba, Atsuo
    Terashima, Yuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (08)
  • [24] Exact WKB analysis and cluster algebras
    Iwaki, Kohei
    Nakanishi, Tomoki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (47)
  • [25] Cluster Scattering Diagrams and Theta Functions for Reciprocal Generalized Cluster Algebras
    Cheung, Man-Wai
    Kelley, Elizabeth
    Musiker, Gregg
    ANNALS OF COMBINATORICS, 2022, 27 (3) : 615 - 691
  • [26] Linear independence of cluster monomials for skew-symmetric cluster algebras
    Irelli, Giovanni Cerulli
    Keller, Bernhard
    Labardini-Fragoso, Daniel
    Plamondon, Pierre-Guy
    COMPOSITIO MATHEMATICA, 2013, 149 (10) : 1753 - 1764
  • [27] Cluster algebras and category O for representations of Borel subalgebras of quantum afFine algebras
    Hernandez, David
    Leclerc, Bernard
    Algebra & Number Theory, 2016, 10 (09) : 2015 - 2052
  • [28] Categorification of Skew-symmetrizable Cluster Algebras
    Demonet, Laurent
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (06) : 1087 - 1162
  • [29] Positivity and tameness in rank 2 cluster algebras
    Lee, Kyungyong
    Li, Li
    Zelevinsky, Andrei
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (03) : 823 - 840
  • [30] Poisson geometry and Azumaya loci of cluster algebras
    Muller, Greg
    Nguyen, Bach
    Trampel, Kurt
    Yakimov, Milen
    ADVANCES IN MATHEMATICS, 2024, 453