Upper cluster algebras and choice of ground ring

被引:5
|
作者
Bucher, Eric [1 ]
Machacek, John [2 ]
Shapiro, Michael [3 ]
机构
[1] Xavier Univ, Dept Math, Cincinnati, OH 45207 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
cluster algebras; upper cluster algebras; locally acyclic cluster algebras; BELAVIN-DRINFELD DATA; MINIMAL SIZE; SLN;
D O I
10.1007/s11425-018-9486-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We initiate a study of the dependence of the choice of ground ring on the problem on whether a cluster algebra is equal to its upper cluster algebra. A condition for when there is equality of the cluster algebra and upper cluster algebra is given by using a variation of Muller's theory of cluster localization. An explicit example exhibiting dependence on the ground ring is provided. We also present a maximal green sequence for this example.
引用
收藏
页码:1257 / 1266
页数:10
相关论文
共 50 条
  • [1] Upper cluster algebras and choice of ground ring
    Eric Bucher
    John Machacek
    Michael Shapiro
    Science China(Mathematics), 2019, 62 (07) : 1257 - 1266
  • [2] Upper cluster algebras and choice of ground ring
    Eric Bucher
    John Machacek
    Michael Shapiro
    Science China Mathematics, 2019, 62 : 1257 - 1266
  • [3] On class groups of upper cluster algebras
    Pompili, Mara
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025,
  • [4] Bases for upper cluster algebras and tropical points
    Qin, Fan
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (04) : 1255 - 1312
  • [5] Singularities of locally acyclic cluster algebras
    Benito, Angelica
    Muller, Greg
    Rajchgot, Jenna
    Smith, Karen E.
    ALGEBRA & NUMBER THEORY, 2015, 9 (04) : 913 - 936
  • [6] A = u for Locally Acyclic Cluster Algebras
    Muller, Greg
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
  • [7] Unistructurality of cluster algebras
    Cao, Peigen
    Li, Fang
    COMPOSITIO MATHEMATICA, 2020, 156 (05) : 946 - 958
  • [8] Cluster algebras based on vertex operator algebras
    Zuevsky, Alexander
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [9] EXCHANGE MAPS OF CLUSTER ALGEBRAS
    Saleh, Ibrahim
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 16 : 1 - 15
  • [10] Cluster algebras and Jones polynomials
    Kyungyong Lee
    Ralf Schiffler
    Selecta Mathematica, 2019, 25