Conversion of Mevalonate to Isoprenol Using Light Energy in Escherichia coli without Consuming Sugars for ATP Supply

被引:6
作者
Sano, Mikoto [1 ]
Tanaka, Ryo [1 ]
Kamata, Kentaro [1 ]
Hirono-Hara, Yoko [2 ]
Ishii, Jun [3 ,4 ]
Matsuda, Fumio [1 ]
Hara, Kiyotaka Y. [5 ,6 ]
Shimizu, Hiroshi [1 ]
Toya, Yoshihiro [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Bioinformat Engn, Suita, Osaka 5650871, Japan
[2] Univ Shizuoka, Sch Food & Nutr Sci, Dept Environm & Life Sci, Shizuoka 4228526, Japan
[3] Kobe Univ, Engn Biol Res Ctr, Kobe, Hyogo 6578501, Japan
[4] Kobe Univ, Grad Sch Sci Technol & Innovat, Kobe, Hyogo 6578501, Japan
[5] Univ Shizuoka, Sch Food & Nutr Sci, Dept Environm & Life Sci, Shizuoka 4228526, Japan
[6] Univ Shizuoka, Grad Div Nutr & Environm Sci, Shizuoka 4228526, Japan
关键词
ATP; Escherichia coli; isoprenol; rhodopsin; mevalonate; EXPRESSION; RHODOPSIN; PATHWAY;
D O I
10.1021/acssynbio.2c00313
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bioconversion of key intermediate metabolites such as mevalonate into various useful chemicals is a promising strategy for microbial production. However, the conversion of mevalonate into isoprenoids requires a supply of adenosine triphosphate (ATP). Light-driven ATP regeneration using microbial rhodopsin is an attractive module for improving the intracellular ATP supply. In the present study, we demonstrated the ATP-consuming conversion of mevalonate to isoprenol using rhodopsin-expressing Escherichia coli cells as a whole-cell catalyst in a medium that does not contain energy cosubstrate, such as glucose. Heterologous genes for the synthesis of isoprenol from mevalonate, which requires three ATP molecules for the series of reactions, and a delta-rhodopsin gene derived from Haloterrigena turkmenica were cointroduced into E. coli. To evaluate the conversion efficiency of mevalonate to isoprenol, the cells were suspended in a synthetic medium containing mevalonate as the sole carbon source and incubated under dark or light illumination (100 mu mol m-2 s-1). The specific isoprenol production rates were 10.0 +/- 0.9 and 20.4 +/- 0.7 mu mol gDCW-1 h-1 for dark and light conditions, respectively. The conversion was successfully enhanced under the light condition. Furthermore, the conversion efficiency increased with increasing illumination intensity, suggesting that ATP regenerated by the proton motive force generated by rhodopsin using light energy can drive ATP-consuming reactions in the whole-cell catalyst.
引用
收藏
页码:3966 / 3972
页数:7
相关论文
共 25 条
[1]   Cyanobacterial Light-Driven Proton Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based Energy Production and Photosynthesis [J].
Choi, Ah Reum ;
Shi, Lichi ;
Brown, Leonid S. ;
Jung, Kwang-Hwan .
PLOS ONE, 2014, 9 (10)
[2]   Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis [J].
Gonzalez, Jacqueline E. ;
Long, Christopher P. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2017, 39 :9-18
[3]   Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research [J].
Grote, Mathias ;
O'Malley, Maureen A. .
FEMS MICROBIOLOGY REVIEWS, 2011, 35 (06) :1082-1099
[4]   ATP regulation in bioproduction [J].
Hara, Kiyotaka Y. ;
Kondo, Akihiko .
MICROBIAL CELL FACTORIES, 2015, 14
[5]   Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps [J].
Inoue, Keiichi ;
Nomura, Yurika ;
Kandori, Hideki .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (19) :9883-9893
[6]   A light-driven proton pump from Haloterrigena turkmenica:: Functional expression in Escherichia coli membrane and coupling with a H+ co-transporter [J].
Kamo, N ;
Hashiba, T ;
Kikukawa, T ;
Araiso, T ;
Ihara, K ;
Nara, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 341 (02) :285-290
[7]   Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli [J].
Kang, Aram ;
Mendez-Perez, Daniel ;
Goh, Ee-Been ;
Baidoo, Edward E. K. ;
Benites, Veronica T. ;
Beller, Harry R. ;
Keasling, Jay D. ;
Adams, Paul D. ;
Mukhopadhyay, Aindrila ;
Lee, Taek Soon .
METABOLIC ENGINEERING, 2019, 56 :85-96
[8]   Acceleration of target production in co-culture by enhancing intermediate consumption through adaptive laboratory evolution [J].
Kawai, Ryutaro ;
Toya, Yoshihiro ;
Miyoshi, Kenta ;
Murakami, Manami ;
Niide, Teppei ;
Horinouchi, Takaaki ;
Maeda, Tomoya ;
Shibai, Atsushi ;
Furusawa, Chikara ;
Shimizu, Hiroshi .
BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (03) :936-945
[9]   Using Total Internal Reflection Fluorescence Microscopy To Visualize Rhodopsin-Containing Cells [J].
Keffer, J. L. ;
Sabanayagam, C. R. ;
Lee, M. E. ;
DeLong, E. F. ;
Hahn, M. W. ;
Maresca, J. A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (10) :3442-3450
[10]  
Kim S. H., 1992, MOL CELLS, V2, P23