Automatic detection of L-H transition in KSTAR by support vector machine

被引:6
|
作者
Shin, Gi Wook [1 ]
Juhn, J. -W. [2 ]
Kwon, G. I. [2 ]
Son, S. H. [2 ]
Hahn, S. H. [1 ,2 ]
机构
[1] Korea Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea
[2] Natl Fus Res Inst, 113 Gwahak Ro, Daejeon 34133, South Korea
关键词
KSTAR; Plasma control; Machine learning; L-H transition; Support vector machine; TOKAMAK;
D O I
10.1016/j.fusengdes.2017.12.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Method for automatic detection of L-H transition using Support Vector Machine (SVM), a popular tool of supervised machine learning tools, has been evaluated in order to improve plasma density control in KSTAR. Through the SVM, a nonlinear classifier is trained to distinguish L-mode and H-mode using two kinds of diagnostic data measured in KSTAR. The trained classifier has been analyzed for possible usage on the real-time detection through the truncation of the training samples. Study on the optimization of the training samples, and corresponding accuracy change is made for evaluating feasibility for real-time implementations.
引用
收藏
页码:341 / 344
页数:4
相关论文
共 50 条
  • [1] Real-time classification of L-H transition and ELM in KSTAR
    Shin, Giwook
    Juhn, J. -W.
    Kwon, G. I.
    Hahn, S. -H.
    FUSION ENGINEERING AND DESIGN, 2020, 157
  • [2] Automatic signal detection based on support vector machine
    Wang, Hai-jun
    Liu, Gui-zhong
    EARTHQUAKE SCIENCE, 2007, 20 (01) : 88 - 97
  • [3] Automatic signal detection based on support vector machine
    王海军
    刘贵忠
    Acta Seismologica Sinica(English Edition), 2007, (01) : 88 - 97
  • [4] Automatic Detection of Traffic Lights Using Support Vector Machine
    Chen, Zhilu
    Shi, Quan
    Huang, Xinming
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 37 - 40
  • [5] Automatic detection of voltage notches using support vector machine
    Qi R.
    Zyabkina O.
    Martinez D.A.
    Meyer J.
    Renewable Energy and Power Quality Journal, 2021, 19 : 528 - 533
  • [6] L-H transition threshold studies in helium plasmas at JET
    Solano, E. R.
    Birkenmeier, G.
    Delabie, E.
    Silva, C.
    Hillesheim, J. C.
    Boboc, A.
    Carvalho, I. S.
    Carvalho, P.
    Chernyshova, M.
    Craciunescu, T.
    de la Luna, E.
    Fontdecaba, J. M.
    Henriques, R.
    Jacquet, P.
    Jepu, I
    Kappatou, A.
    King, D.
    Lennholm, M.
    Lerche, E.
    Litherland-Smith, E.
    Loarte, A.
    Maslov, M.
    Diaz, F. Parra
    Parail, V
    Pawelec, E.
    Rimini, F. G.
    Shaw, A.
    Siren, P.
    Szepesi, G.
    Stancar, Z.
    Tholerus, E.
    Vartanian, S.
    Viola, B.
    Weisen, H.
    NUCLEAR FUSION, 2021, 61 (12)
  • [7] Probabilistic theory of the L-H transition and causality
    Kim, Eun-jin
    Thiruthummal, Abhiram Anand
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (02)
  • [8] Automatic detection of microcalcifications using mathematical morphology and a support vector machine
    Zhang, Erhu
    Wang, Fan
    Li, Yongchao
    Bai, Xiaonan
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (01) : 53 - 59
  • [9] On revisited models of L-H transition for tokamak plasmas
    Negrea, M.
    Petrisor, I.
    Weyssow, B.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (08): : 1946 - 1949
  • [10] Understanding L-H transition in tokamak fusion plasmas
    Xu, Guosheng
    Wu, Xingquan
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (03)