The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes

被引:54
作者
Hanifi, A. R. [1 ]
Laguna-Bercero, M. A. [2 ]
Etsell, T. H. [1 ]
Sarkar, P. [3 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[2] Univ Zaragoza, CSIC, ICMA, E-50009 Zaragoza, Spain
[3] Alberta Innovates Technol Futures, Environm & Carbon Management, Edmonton, AB T6N 1E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Infiltration; Ni-YSZ; SDC; LSM; SOFC; SOEC; NANO-STRUCTURED ELECTRODES; STEAM ELECTROLYSIS; COMPOSITE CATHODE; ANODES; STABILITY; IMPREGNATION; FABRICATION; BEHAVIOR; REDOX;
D O I
10.1016/j.ijhydene.2014.03.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical performance of two different anode supported tubular cells (50:50 wt% NiO:YSZ (yttria stabilized zirconia) or 34:66 vol.% Ni:YSZ) as the fuel electrode and YSZ as the electrolyte) under SOFC (solid oxide fuel cell) and SOEC (solid oxide electrolysis cell) modes were studied in this research. LSM (La0.80Sr0.20MnO3-delta) was infiltrated into a thin porous YSZ layer to form the oxygen electrode of both cells and, in addition, SDC (Sm0.2Ce0.8O1.9) was infiltrated into the fuel electrode of one of the cells. The microstructure of the infiltrated fuel cells showed a suitable distribution of fine LSM and SDC particles (50-100 nm) near the interface of electrodes and electrolyte and throughout the bulk of the electrodes. The results show that SDC infiltration not only enhances the electrochemical reaction in SOFC mode but improves the performance even more in SOEC mode. In addition, LSM infiltrated electrodes also boost the SOEC performance in comparison with standard LSM YSZ composite electrodes, due to the well-dispersed LSM nanoparticles (favouring the electrochemical reactions) within the YSZ porous matrix. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8002 / 8008
页数:7
相关论文
共 42 条
[1]   Reasons for the high stability of nano-structured (La,Sr)MnO3 infiltrated Y2O3-ZrO2 composite oxygen electrodes of solid oxide electrolysis cells [J].
Chen, Kongfa ;
Ai, Na ;
Jiang, San Ping .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 19 :119-122
[2]   Development of (Gd,Ce)O2-Impregnated (La,Sr)MnO3 Anodes of High Temperature Solid Oxide Electrolysis Cells [J].
Chen, Kongfa ;
Ai, Na ;
Jiang, San Ping .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :P89-P94
[3]  
Chueh WC, 2012, NAT MATER, V11, P155, DOI [10.1038/NMAT3184, 10.1038/nmat3184]
[4]   High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria [J].
Chueh, William C. ;
Falter, Christoph ;
Abbott, Mandy ;
Scipio, Danien ;
Furler, Philipp ;
Haile, Sossina M. ;
Steinfeld, Aldo .
SCIENCE, 2010, 330 (6012) :1797-1801
[5]   Catalysis in Solid Oxide Fuel Cells [J].
Gorte, R. J. ;
Vohs, J. M. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 2, 2011, 2 :9-30
[6]   Fuel cell materials and components [J].
Haile, SM .
ACTA MATERIALIA, 2003, 51 (19) :5981-6000
[7]   Development of Redox Resistant Fully Infiltrated Tubular SOFCs [J].
Hanifi, Amir Reza ;
Torabi, Alireza ;
Chen, Xueyuan ;
Hill, Shannon ;
Sarkar, Partha ;
Etsell, Thomas H. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (04) :F391-F397
[8]   Improved Redox and Thermal Cycling Resistant Tubular Ceramic Fuel Cells [J].
Hanifi, Amir Reza ;
Torabi, Alireza ;
Zazulak, Mark ;
Etsell, Thomas H. ;
Yamarte, Luis ;
Sarkar, Partha ;
Tucker, Michael C. .
SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01) :409-418
[9]   Porous electrolyte-supported tubular micro-SOFC design [J].
Hanifi, Amir Reza ;
Torabi, Alireza ;
Etsell, Thomas H. ;
Yamarte, Luis ;
Sarkar, Partha .
SOLID STATE IONICS, 2011, 192 (01) :368-371
[10]  
Hanifi AR, 2011, J CERAM PROCESS RES, V12, P336