Cross-linked structure of network evolution

被引:54
作者
Bassett, Danielle S. [1 ,2 ,3 ]
Wymbs, Nicholas F. [4 ,5 ]
Porter, Mason A. [6 ,7 ]
Mucha, Peter J. [8 ,9 ]
Grafton, Scott T. [4 ,5 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Sage Ctr Study Mind, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Psychol, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, UCSB Brain Imaging Ctr, Santa Barbara, CA 93106 USA
[6] Univ Oxford, Math Inst, Oxford Ctr Ind & Appl Math, Oxford OX2 6GG, England
[7] Univ Oxford, CABDyN Complex Ctr, Oxford OX1 1HP, England
[8] Univ N Carolina, Dept Math, Carolina Ctr Interdisciplinary Appl Math, Chapel Hill, NC 27599 USA
[9] Univ N Carolina, Dept Appl Phys Sci, Chapel Hill, NC 27599 USA
基金
英国工程与自然科学研究理事会;
关键词
COMMUNITY STRUCTURE; COMPLEX; SYNCHRONIZATION; RECRUITMENT; DYNAMICS;
D O I
10.1063/1.4858457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]  
[Anonymous], STATUS NETWORK STRUC
[3]  
[Anonymous], 2007, Scholarpedia, DOI DOI 10.4249/SCHOLARPEDIA.1459
[4]  
[Anonymous], 1984, Chemical Oscillations, Waves, and Turbulence
[5]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[6]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[7]   Task-Based Core-Periphery Organization of Human Brain Dynamics [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Rombach, M. Puck ;
Porter, Mason A. ;
Mucha, Peter J. ;
Grafton, Scott T. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[8]   Robust detection of dynamic community structure in networks [J].
Bassett, Danielle S. ;
Porter, Mason A. ;
Wymbs, Nicholas F. ;
Grafton, Scott T. ;
Carlson, Jean M. ;
Mucha, Peter J. .
CHAOS, 2013, 23 (01)
[9]   Altered resting state complexity in schizophrenia [J].
Bassett, Danielle S. ;
Nelson, Brent G. ;
Mueller, Bryon A. ;
Camchong, Jazmin ;
Lim, Kelvin O. .
NEUROIMAGE, 2012, 59 (03) :2196-2207
[10]   Dynamic reconfiguration of human brain networks during learning [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Porter, Mason A. ;
Mucha, Peter J. ;
Carlson, Jean M. ;
Grafton, Scott T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) :7641-7646