Vortex-induced vibration response characteristics of catenary riser conveying two-phase internal flow

被引:13
作者
Li, Xinghui [1 ,2 ]
Yuan, Yuchao [1 ,2 ]
Xue, Hongxiang [1 ,2 ]
Tang, Wenyong [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explora, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Catenary riser; Vortex-induced vibration; Internal flow; Gas-liquid two-phase flow; Solid-liquid two-phase flow; CYLINDER;
D O I
10.1016/j.oceaneng.2022.111617
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Vortex-induced vibration (VIV) of the riser considering both external flow and multiphase internal flow is a complex fluid-structure interaction problem. Due to its flexible feature, steel catenary riser (SCR) may be more affected by internal flow than top-tensioned riser (TTR). Firstly, the semi-empirical time domain VIV model of riser with internal flow is introduced, and the theories of gas-liquid flow and solid-liquid flow are applied to modify the model. Then the VIV of TTR and SCR with internal flow are compared. Subsequently, the VIV of SCR with gas-liquid flow and solid-liquid flow are calculated, and their different effects are discussed. The results show that internal flow triggers higher-order modes of VIV and enlarges the fatigue damage in general. With similar length, internal flow has more significant impact on SCR than TTR. The increase of liquid volumetric flow rate, solid production and gas volumetric quality enlarges the modal order and fatigue damage. The increase of solid volumetric quality and solid density reduces the modal order and fatigue damage. Compared with gas liquid flow, solid-liquid flow may decrease the VIV amplitude and reduce the fatigue damage.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Synergetic analysis and possible control of vortex-induced vibrations in a fluid-conveying steel catenary riser
    Meng Dan
    Zhu Chongji
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2015, 14 (02) : 245 - 254
  • [32] Synergetic analysis and possible control of vortex-induced vibrations in a fluid-conveying steel catenary riser
    Dan Meng
    Chongji Zhu
    Journal of Ocean University of China, 2015, 14 : 245 - 254
  • [33] Synergetic Analysis and Possible Control of Vortex-Induced Vibrations in a Fluid-Conveying Steel Catenary Riser
    MENG Dan
    ZHU Chongji
    Journal of Ocean University of China, 2015, 14 (02) : 245 - 254
  • [34] Study on Vortex-Induced Vibration Response of Riser under the Action of Oscillating Flow Superposition
    Liu, Fugang
    Sang, Song
    Zhang, Wenlin
    Zhang, Jintao
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [35] Vortex-induced vibration of a flexible fluid-conveying riser due to vessel motion
    Duan, Jinlong
    Zhou, Jifu
    Wang, Xu
    You, Yunxiang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 223
  • [36] Experimental investigation on hydrodynamic characteristics of water intake riser undergoing vortex-induced vibration in uniform flow
    Bai, Yingli
    Zhang, Mengmeng
    Fu, Shixiao
    Xu, Yuwang
    Ren, Haojie
    Wang, Jing
    OCEAN ENGINEERING, 2024, 305
  • [37] Numerical Study of Vortex-Induced Vibration Characteristics of a Long Flexible Marine Riser
    Zou, Jiahe
    Zhou, Bo
    Yi, Wenxin
    Lu, Conghong
    Liu, Hui
    Luo, Wenqing
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [38] Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    Wu, Jie
    Larsen, Carl Martin
    OCEAN ENGINEERING, 2015, 109 : 389 - 400
  • [39] Fatigue damage of a steel catenary riser from vortex-induced vibration caused by vessel motions
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    Wu, Jie
    Larsen, Carl Martin
    MARINE STRUCTURES, 2014, 39 : 131 - 156
  • [40] Vortex-induced vibration mechanism of drilling riser under shear flow
    Mao Liangjie
    Liu Qingyou
    Zhou Shouwei
    Jiang Wei
    Liu Zhengli
    Peng Tao
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2015, 42 (01) : 112 - 118