Vortex-induced vibration response characteristics of catenary riser conveying two-phase internal flow

被引:13
|
作者
Li, Xinghui [1 ,2 ]
Yuan, Yuchao [1 ,2 ]
Xue, Hongxiang [1 ,2 ]
Tang, Wenyong [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explora, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Catenary riser; Vortex-induced vibration; Internal flow; Gas-liquid two-phase flow; Solid-liquid two-phase flow; CYLINDER;
D O I
10.1016/j.oceaneng.2022.111617
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Vortex-induced vibration (VIV) of the riser considering both external flow and multiphase internal flow is a complex fluid-structure interaction problem. Due to its flexible feature, steel catenary riser (SCR) may be more affected by internal flow than top-tensioned riser (TTR). Firstly, the semi-empirical time domain VIV model of riser with internal flow is introduced, and the theories of gas-liquid flow and solid-liquid flow are applied to modify the model. Then the VIV of TTR and SCR with internal flow are compared. Subsequently, the VIV of SCR with gas-liquid flow and solid-liquid flow are calculated, and their different effects are discussed. The results show that internal flow triggers higher-order modes of VIV and enlarges the fatigue damage in general. With similar length, internal flow has more significant impact on SCR than TTR. The increase of liquid volumetric flow rate, solid production and gas volumetric quality enlarges the modal order and fatigue damage. The increase of solid volumetric quality and solid density reduces the modal order and fatigue damage. Compared with gas liquid flow, solid-liquid flow may decrease the VIV amplitude and reduce the fatigue damage.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser
    Meng, Dan
    Chen, Liang
    APPLIED OCEAN RESEARCH, 2012, 34 : 52 - 67
  • [22] INFLUENCE OF INTERNAL SLUG FLOW ON VORTEX-INDUCED VIBRATION OF FLEXIBLE RISER WITH VARIABLE CURVATURE
    Ma, Bowen
    Srinil, Narakorn
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 7, 2022,
  • [23] Effects of vertical and lateral riser-soil interactions on vortex-induced vibration of a steel catenary riser
    Li, Shaojie
    Zhang, Cheng
    Kang, Zhuang
    Ai, Shangmao
    OCEAN ENGINEERING, 2024, 306
  • [24] Nonlinear riser-seabed interaction response among touchdown zone of a steel catenary riser in consideration of vortex-induced vibration
    Yuan, Yuchao
    Zheng, Mengtian
    Xue, Hongxiang
    Tang, Wenyong
    OCEAN ENGINEERING, 2021, 227
  • [25] DYNAMIC RESPONSE OF A FLUID-CONVEYING RISER SUBJECT TO VORTEX-INDUCED VIBRATION: INTEGRAL TRANSFORM SOLUTION
    Gu, Jijun
    Song, Zhenhua
    Zhang, Kang
    Su, Liguo
    Duan, Menglan
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 6B: PIPELINE AND RISER TECHNOLOGY, 2014,
  • [26] Numerical simulation of vortex-induced vibration of a marine riser with a multiphase internal flow considering hydrate phase transition
    Liang, Weixing
    Lou, Min
    OCEAN ENGINEERING, 2020, 216 (216)
  • [27] Numerical Prediction of Fatigue Damage in Steel Catenary Riser Due to Vortex-Induced Vibration
    Yun Gao
    Zhi Zong
    Lei Sun
    Journal of Hydrodynamics, 2011, 23 : 154 - 163
  • [28] Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser
    Zhu, Hongjun
    Hu, Jie
    Gao, Yue
    Zhao, Honglei
    Xu, Wanhai
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 102
  • [29] NUMERICAL PREDICTION OF FATIGUE DAMAGE IN STEEL CATENARY RISER DUE TO VORTEX-INDUCED VIBRATION
    GAO Yun State Key Laboratory of Structural Analysis for Industrial Equipment and Department of Naval Architecture and Faculty of Vehicle Engineering and Mechanics
    JournalofHydrodynamics, 2011, 23 (02) : 154 - 163
  • [30] Experimental Study on the Vortex-induced Vibration of a Catenary Flexible Riser under Sheared Flows
    Zhu, Hongjun
    Hu, Jie
    Zhao, Honglei
    Gao, Yue
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2021, 31 (03) : 283 - 292