Experimental demonstration of five-photon entanglement and open-destination teleportation

被引:556
作者
Zhao, Z
Chen, YA
Zhang, AN
Yang, T
Briegel, HJ
Pan, JW [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[4] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[5] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
基金
中国国家自然科学基金;
关键词
D O I
10.1038/nature02643
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum-mechanical entanglement of three(1,2) or four(3,4) particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism(5,6). However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required(7,8) for universal quantum error correction. Another key process in distributed quantum information processing(9,10), similar to encoding and decoding, is a teleportation protocol(11,12) that we term 'open-destination' teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out ( for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation(9,10) and multi-party quantum communication(13,14).
引用
收藏
页码:54 / 58
页数:5
相关论文
共 30 条
  • [1] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [2] Entanglement-assisted classical capacity of noisy quantum channels
    Bennett, CH
    Shor, PW
    Smolin, JA
    Thapliyal, AV
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (15) : 3081 - 3084
  • [3] Experimental quantum teleportation
    Bouwmeester, D
    Pan, JW
    Mattle, K
    Eibl, M
    Weinfurter, H
    Zeilinger, A
    [J]. NATURE, 1997, 390 (6660) : 575 - 579
  • [4] Bit-flip-error rejection in optical quantum communication
    Bouwmeester, D
    [J]. PHYSICAL REVIEW A, 2001, 63 (04): : 1 - 4
  • [5] Observation of three-photon Greenberger-Horne-Zeilinger entanglement
    Bouwmeester, D
    Pan, JW
    Daniell, M
    Weinfurter, H
    Zeilinger, A
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (07) : 1345 - 1349
  • [6] Persistent entanglement in arrays of interacting particles
    Briegel, HJ
    Raussendorf, R
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 910 - 913
  • [7] Experimental realization of the quantum universal NOT gate
    De Martini, F
    Buzek, V
    Sciarrino, F
    Sias, C
    [J]. NATURE, 2002, 419 (6909) : 815 - 818
  • [8] Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations
    Gottesman, D
    Chuang, IL
    [J]. NATURE, 1999, 402 (6760) : 390 - 393
  • [9] Multiparty entanglement in graph states
    Hein, M
    Eisert, J
    Briegel, HJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06) : 062311 - 1
  • [10] Quantum secret sharing
    Hillery, M
    Buzek, V
    Berthiaume, A
    [J]. PHYSICAL REVIEW A, 1999, 59 (03): : 1829 - 1834