Low order stabilizing controllers for a class of distributed parameter systems

被引:5
|
作者
Sano, Hideki [1 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Dept Appl Math, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
基金
日本学术振兴会;
关键词
Distributed parameter system; Finite-dimensional controller; Residual mode filter; Stability radius; Semigroup; FINITE-DIMENSIONAL COMPENSATORS; FEEDBACK STABILIZATION;
D O I
10.1016/j.automatica.2018.02.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with reduction of the order of finite-dimensional stabilizing controllers for a class of distributed parameter systems. Since the middle of the 1980s, the design method of finite-dimensional stabilizing controllers of Sakawa type has been generalized for a wider class of parabolic distributed parameter systems with boundary control and/or boundary observation. The controller of Sakawa type consists of two kinds of observers: one is an observer of Luenberger type and the other is an estimator for residual modes. Especially, the latter is called residual mode filter (RMF), and it plays an essential role in the design of finite-dimensional stabilizing controllers when the order of RMF is "sufficiently large". The purpose of this paper is to propose the design method containing low order RMF. An approach based on stability radius is employed. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [22] The Structure of Robust Controllers for Distributed Parameter Systems
    Hamalainen, Timo
    Pohjolainen, Seppo
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2209 - 2214
  • [23] Reduced order controllers for distributed parameter systems: LQG balanced truncation and an adaptive approach
    King, Belinda Batten
    Hovakimyan, Naira
    Evans, Katie A.
    Buhl, Michael
    MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (9-10) : 1136 - 1149
  • [24] Fast calculation of stabilizing PID controllers for uncertain parameter systems
    Munro, N
    Soylemez, MT
    ROBUST CONTROL DESIGN 2000, VOLS 1 & 2, 2000, 1-2 : 549 - 554
  • [25] EXISTENCE AND UNIQUENESS FOR SOLUTIONS OF A CLASS OF SECOND ORDER DISTRIBUTED PARAMETER SYSTEMS
    Lu, Zuliang
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2014,
  • [26] Feedback control for a class of second order hyperbolic distributed parameter systems
    Qin FU
    Weiguo GU
    Panpan GU
    Jianrong WU
    Science China(Information Sciences), 2016, 59 (09) : 156 - 164
  • [27] Feedback control for a class of second order hyperbolic distributed parameter systems
    Fu, Qin
    Gu, Weiguo
    Gu, Panpan
    Wu, Jianrong
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (09)
  • [28] Iterative Learning Control for a Class of Fractional Order Distributed Parameter Systems
    Lan, Yong-Hong
    Liu, Li
    Luo, Yi-Ping
    ASIAN JOURNAL OF CONTROL, 2020, 22 (01) : 449 - 459
  • [29] Second-order observer for a class of second-order distributed parameter systems
    Nguyen, Tu Duc
    Egeland, Olav
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3950 - 3955
  • [30] Learning Distributed Stabilizing Controllers for Multi-Agent Systems
    Jing, Gangshan
    Bai, He
    George, Jemin
    Chakrabortty, Aranya
    Sharma, Piyush K.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 301 - 306