Clustering in delay-coupled smooth and relaxational chemical oscillators

被引:18
|
作者
Blaha, Karen [1 ]
Lehnert, Judith [2 ]
Keane, Andrew [2 ]
Dahms, Thomas [2 ]
Hoevel, Philipp [2 ,3 ]
Schoell, Eckehard [2 ]
Hudson, John L. [1 ]
机构
[1] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22902 USA
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, D-10115 Berlin, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
美国国家科学基金会;
关键词
SYNCHRONIZATION; BIFURCATION; NETWORKS; DYNAMICS;
D O I
10.1103/PhysRevE.88.062915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate cluster synchronization in networks of nonlinear systems with time-delayed coupling. Using a generic model for a system close to the Hopf bifurcation, we predict the order of appearance of different cluster states and their corresponding common frequencies depending upon coupling delay. We may tune the delay time in order to ensure the existence and stability of a specific cluster state. We qualitatively and quantitatively confirm these results in experiments with chemical oscillators. The experiments also exhibit strongly nonlinear relaxation oscillations as we increase the voltage, i.e., go further away from the Hopf bifurcation. In this regime, we find secondary cluster states with delay-dependent phase lags. These cluster states appear in addition to primary states with delay-independent phase lags observed near the Hopf bifurcation. Extending the theory on Hopf normal-form oscillators, we are able to account for realistic interaction functions, yielding good agreement with experimental findings.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Synchronization of unidirectionally delay-coupled chaotic oscillators with memory
    Jaimes-Reategui, Rider
    Vera-Avila, Victor P.
    Sevilla-Escoboza, Ricardo
    Huerta-Cuellar, Guillermo
    Castaneda-Hernandez, Carlos E.
    Chiu-Zarate, Roger
    Pisarchik, Alexander N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (13-14): : 2707 - 2715
  • [22] Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators
    Kulminskiy, D. D.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    Hramov, A. E.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 735 - 748
  • [23] Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
    Dadi, Z.
    Afsharnezhad, Z.
    Pariz, N.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 155 - 169
  • [24] Symmetric periodic solutions of delay-coupled optoelectronic oscillators
    Zhang, Chunrui
    Li, Hongpeng
    Advances in Difference Equations, 2016, : 1 - 12
  • [25] Symmetric periodic solutions of delay-coupled optoelectronic oscillators
    Chunrui Zhang
    Hongpeng Li
    Advances in Difference Equations, 2016
  • [26] Amplitude death in delay-coupled oscillators on directed graphs
    Sugitani, Yoshiki
    Konishi, Keiji
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [27] Synchronization of unidirectionally delay-coupled chaotic oscillators with memory
    Rider Jaimes-Reátegui
    Victor P. Vera-Ávila
    Ricardo Sevilla-Escoboza
    Guillermo Huerta-Cuéllar
    Carlos E. Castañeda-Hernández
    Roger Chiu-Zarate
    Alexander N. Pisarchik
    The European Physical Journal Special Topics, 2016, 225 : 2707 - 2715
  • [28] Chimera states in purely local delay-coupled oscillators
    Bera, Bidesh K.
    Ghosh, Dibakar
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [29] Collective dynamics of delay-coupled limit cycle oscillators
    Abhijit Sen
    Ramana Dodla
    George L. Johnston
    Pramana, 2005, 64 : 465 - 482
  • [30] Occasional coupling enhances amplitude death in delay-coupled oscillators
    Ghosh, Anupam
    Mondal, Sirshendu
    Sujith, R. I.
    CHAOS, 2022, 32 (10)