Clustering in delay-coupled smooth and relaxational chemical oscillators

被引:18
|
作者
Blaha, Karen [1 ]
Lehnert, Judith [2 ]
Keane, Andrew [2 ]
Dahms, Thomas [2 ]
Hoevel, Philipp [2 ,3 ]
Schoell, Eckehard [2 ]
Hudson, John L. [1 ]
机构
[1] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22902 USA
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, D-10115 Berlin, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
美国国家科学基金会;
关键词
SYNCHRONIZATION; BIFURCATION; NETWORKS; DYNAMICS;
D O I
10.1103/PhysRevE.88.062915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate cluster synchronization in networks of nonlinear systems with time-delayed coupling. Using a generic model for a system close to the Hopf bifurcation, we predict the order of appearance of different cluster states and their corresponding common frequencies depending upon coupling delay. We may tune the delay time in order to ensure the existence and stability of a specific cluster state. We qualitatively and quantitatively confirm these results in experiments with chemical oscillators. The experiments also exhibit strongly nonlinear relaxation oscillations as we increase the voltage, i.e., go further away from the Hopf bifurcation. In this regime, we find secondary cluster states with delay-dependent phase lags. These cluster states appear in addition to primary states with delay-independent phase lags observed near the Hopf bifurcation. Extending the theory on Hopf normal-form oscillators, we are able to account for realistic interaction functions, yielding good agreement with experimental findings.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Phase clustering in complex networks of delay-coupled oscillators
    Perez, Toni
    Eguiluz, Victor M.
    Arenas, Alex
    CHAOS, 2011, 21 (02)
  • [2] Transitional cluster dynamics in a model for delay-coupled chemical oscillators
    Keane, Andrew
    Neff, Alannah
    Blaha, Karen
    Amann, Andreas
    Hoevel, Philipp
    CHAOS, 2023, 33 (06)
  • [3] Stochastic switching in delay-coupled oscillators
    D'Huys, Otti
    Juengling, Thomas
    Kinzel, Wolfgang
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [4] Stability of networks of delay-coupled delay oscillators
    Hoefener, J. M.
    Sethia, G. C.
    Gross, T.
    EPL, 2011, 95 (04)
  • [5] Excitation regeneration in delay-coupled oscillators
    Kelleher, B.
    Bonatto, C.
    Skoda, P.
    Hegarty, S. P.
    Huyet, G.
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [6] Synchronization of delay-coupled gyrotron oscillators
    Adilova, A. B.
    Gerasimova, S. A.
    Ryskin, N. M.
    10TH INTERNATIONAL WORKSHOP 2017 STRONG MICROWAVES AND TERAHERTZ WAVES: SOURCES AND APPLICATIONS, 2017, 149
  • [7] Amplitude death in networks of delay-coupled delay oscillators
    Hoefener, Johannes M.
    Sethia, Gautam C.
    Gross, Thilo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1999):
  • [8] Oscillation death in asymmetrically delay-coupled oscillators
    Zou, Wei
    Tang, Yang
    Li, Lixiang
    Kurths, Juergen
    PHYSICAL REVIEW E, 2012, 85 (04):
  • [9] Periodic patterns in a ring of delay-coupled oscillators
    Perlikowski, P.
    Yanchuk, S.
    Popovych, O. V.
    Tass, P. A.
    PHYSICAL REVIEW E, 2010, 82 (03)
  • [10] Global synchronization of delay-coupled genetic oscillators
    Qiu, Jianlong
    Cao, Jinde
    NEUROCOMPUTING, 2009, 72 (16-18) : 3845 - 3850