Selection of efficient solvent in solvent-aided thermal recovery of bitumen

被引:31
作者
Sabet, Nasser [1 ]
Hassanzadeh, Hassan [1 ]
Abedi, Jalal [1 ]
机构
[1] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Solvent-aided thermal recovery; Linear stability analysis; Amplification theory; Azeotrope point; Bitumen recovery; SATURATED POROUS LAYER; STABILITY ANALYSIS; HEAVY OIL; VISCOSITY; CONVECTION; SUBJECT; DENSITY; STORAGE; FLUID; MEDIA;
D O I
10.1016/j.ces.2016.12.031
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In solvent-assisted thermal recovery of bitumen, steam and solvent transfer their latent heat to the oil sands, mobilize the bitumen and co-condense on steam-bitumen interface. The mixing of heated bitumen with solvents further reduces its viscosity and the mobilized oil drains by gravity toward the production well. Co-injection of steam and solvent results in a gravitationally unstable diffusive boundary layer leading to convective dissolution of bitumen and solvent and thereby increases the oil recovery. We present a linear stability analysis to study the growth of convective instabilities and determine the onset of convective dissolution and the initial wavelength of instabilities. The scaling relations obtained from the linear stability are used to find the optimum solvent for solvent-aided thermal recovery processes by taking into account the azeotropic nature of solvent and steam co-condensation. The results show that an n-alkane carbon number range between 7 and 9 leads to earlier onset of convective dissolution, which is in agreement with the results of reservoir simulations. This study provides a fast screening method for selection of efficient solvent for the solvent-aided thermal recovery processes. In addition, the predicted initial wavelengths of instabilities facilitates selection of the proper grid size in numerical simulation of solvent and steam recovery processes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 28 条