Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages

被引:14
作者
Liu, Songtao [1 ,2 ,3 ]
Zenda, Tinashe [1 ,2 ,3 ]
Li, Jiao [1 ,2 ,3 ]
Wang, Yafei [1 ,2 ,3 ]
Liu, Xinyue [1 ,2 ,3 ]
Duan, Huijun [1 ,2 ,3 ]
机构
[1] Hebei Agr Univ, State Key Lab Crop Improvement & Regulat, Baoding, Peoples R China
[2] Hebei Agr Univ, Educ Minist, North China Key Lab Crop Germplasm Resources, Baoding, Peoples R China
[3] Hebei Agr Univ, Coll Agron, Dept Crop Genet & Breeding, Baoding, Peoples R China
关键词
DIFFERENTIAL EXPRESSION; ANTIOXIDANT ENZYMES; ABSCISIC-ACID; WATER-STRESS; PROTEINS; GROWTH; LEAF; ARABIDOPSIS; SALINITY; NETWORKS;
D O I
10.1371/journal.pone.0240468
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drought stress is the primary environmental factor that negatively influences plant growth and yield in cereal grain crops such as maize (Zea maysL.). Crop breeding efforts for enhanced drought resistance require improved knowledge of plant drought stress responses. In this study, we applied a 12-day water-deficit stress treatment to maize plants of two contrasting (drought tolerant ND476 and drought sensitive ZX978) hybrid cultivars at four (V12, VT, R1, and R4) crop growth stages and we report key cultivar-specific and growth-stage-specific molecular mechanisms regulating drought stress responses in maize. Based on the transcriptome analysis, a total of 3451 and 4088 differentially expressed genes (DEGs) were identified in ND476 and ZX978 from the four experimental comparisons, respectively. These gene expression changes effected corresponding metabolic pathway responses related to drought tolerance in maize. In ND476, the DEGs associated with the ribosome, starch and sucrose metabolism, phenylpropanoid biosynthesis and phenylpropanoid metabolism pathways were predominant at the V12, VT, R2, and R4 stages, respectively, whereas those in ZX978 were related to ribosome, pentose and glucuronate interconversions (PGI), MAPK signaling and sulfur metabolism pathways, respectively. MapMan analysis revealed that DEGs related to secondary metabolism, lipid metabolism, and amino acid metabolism were universal across the four growth stages in ND476. Meanwhile, the DEGs involved in cell wall, photosynthesis and amino acid metabolism were universal across the four growth stages in ZX978. However, K-means analysis clustered those DEGs into clear and distinct expression profiles in ND476 and ZX978 at each stage. Several functional and regulatory genes were identified in the special clusters related to drought defense response. Our results affirmed that maize drought stress adaptation is a cultivar-specific response as well as a stage-specific response process. Additionally, our findings enrich the maize genetic resources and enhance our further understanding of the molecular mechanisms regulating drought stress tolerance in maize. Further, the DEGs screened in this study may provide a foundational basis for our future targeted cloning studies.
引用
收藏
页数:27
相关论文
共 72 条
[1]  
[Anonymous], 2019, FAOSTAT
[2]  
Aslam M., 2015, SpringerBriefs in Agriculture
[3]  
Azuaje Francisco, 2003, Briefings in Bioinformatics, V4, P31, DOI 10.1093/bib/4.1.31
[4]   HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection [J].
Babu, RC ;
Zhang, JX ;
Blum, A ;
Ho, THD ;
Wu, R ;
Nguyen, HT .
PLANT SCIENCE, 2004, 166 (04) :855-862
[5]   Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat [J].
Bano, A. ;
Ullah, F. ;
Nosheen, A. .
PLANT SOIL AND ENVIRONMENT, 2012, 58 (04) :181-185
[6]   A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat [J].
Bazargani, Mitra Mohammadi ;
Sarhadi, Elham ;
Bushehri, Ali-Akbar Shahnejat ;
Matros, Andrea ;
Mock, Hans-Peter ;
Naghavi, Mohammad-Reza ;
Hajihoseini, Vahid ;
Mardi, Mohsen ;
Hajirezaei, Mohammad-Reza ;
Moradi, Foad ;
Ehdaie, Bahman ;
Salekdeh, Ghasem Hosseini .
JOURNAL OF PROTEOMICS, 2011, 74 (10) :1959-1973
[7]   Drought stress adaptation: metabolic adjustment and regulation of gene expression [J].
Bhargava, Sujata ;
Sawant, Kshitija .
PLANT BREEDING, 2013, 132 (01) :21-32
[8]   Balancing metabolites in drought: the sulfur assimilation conundrum [J].
Chan, Kai Xun ;
Wirtz, Markus ;
Phua, Su Yin ;
Estavillo, Gonzalo M. ;
Pogson, Barry J. .
TRENDS IN PLANT SCIENCE, 2013, 18 (01) :18-29
[9]   Transcriptomic changes under combined drought and nonhost bacteria reveal novel and robust defenses in Arabidopsis thaliana [J].
Choudhary, Aanchal ;
Gupta, Aarti ;
Ramegowda, Venkategowda ;
Senthil-Kumar, Muthappa .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2017, 139 :152-164
[10]   Developmental and transcriptional responses of maize to drought stress under field conditions [J].
Danilevskaya, Olga N. ;
Yu, GongXin ;
Meng, Xin ;
Xu, John ;
Stephenson, Elizabeth ;
Estrada, Stacey ;
Chilakamarri, Sunita ;
Zastrow-Hayes, Gina ;
Thatcher, Shawn .
PLANT DIRECT, 2019, 3 (05)