Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems

被引:89
作者
Zhang, ZJ [1 ]
Cheng, JG [1 ]
机构
[1] Yantai Univ, Dept Math & Informat Sci, Yantai 264005, Peoples R China
关键词
semilinear elliptic equations; Dirichlet problems; singularity; existence; optimal approximations;
D O I
10.1016/j.na.2004.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the properties of the unique classical solution to the singular boundary value problem on half line -p"(s) = y(p(s)),p(s) > 0, s is an element of (0, infinity), p(0) = 0, lim(s-->infinity) p'(s) = b greater than or equal to 0, and constructing the new comparison functions, they show the existence and the optimal global estimates of solutions to singular nonlinear Dirichlet problems -Deltau = k(x)y(u), u > 0, x is an element of Omega, u\(phiOmega) = 0, where Omega is a bounded domain with smooth boundary in R-N; g(s) is nonincreasing and positive in (0, infinity), integral(1)(infinity) g(t) dt < infinity and lim(s-->0+) g(s) = +infinity; k is an element of C-alpha(Omega) is positive in Omega, and may be singular or zero on the boundary. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:473 / 484
页数:12
相关论文
共 22 条
[1]   Some remarks on a singular elliptic boundary value problem [J].
Choi, YS ;
Lazer, AC ;
McKenna, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :305-314
[2]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[3]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[4]  
CUI SB, 1993, NONLINEAR ANAL-THEOR, V21, P181
[5]   Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems [J].
Cui, SB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :149-176
[6]  
Fulks W., 1960, Osaka Math J, V12, P1
[7]  
GHERGU, 2003, C R ACAD SCI PARIS 1, V337, P259
[8]   Sublinear singular elliptic problems with two parameters [J].
Ghergu, M ;
Radulescu, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) :520-536
[9]   ON A SINGULAR NONLINEAR ELLIPTIC PROBLEM [J].
GOMES, SM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1359-1369
[10]   Entire solution of a singular semilinear elliptic problem [J].
Lair, AV ;
Shaker, AW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (02) :498-505