Quantifying the Robustness of Topological Slow Light

被引:76
作者
Arregui, Guillermo [1 ,2 ]
Gomis-Bresco, Jordi [1 ,2 ]
Sotomayor-Torres, Clivia M. [1 ,2 ,3 ]
David Garcia, Pedro [1 ,2 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[2] BIST, Campus UAB, Barcelona 08193, Spain
[3] ICREA Inst Cataluna Recerca & Estudis Avancats, Barcelona 08010, Spain
基金
欧盟地平线“2020”;
关键词
LOCALIZATION;
D O I
10.1103/PhysRevLett.126.027403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The backscattering mean free path xi, the average ballistic propagation length along a waveguide, quantifies the resistance of slow light against unwanted imperfections in the critical dimensions of the nanostructure. This figure of merit determines the crossover between acceptable slow-light transmission affected by minimal scattering losses and a strong backscattering-induced destructive interference when the waveguide length L exceeds xi. Here, we calculate the backscattering mean free path for a topological photonic waveguide for a specific and determined amount of disorder and, equally relevant, for a fixed value of the group index n(g) which is the slowdown factor of the group velocity with respect to the speed of light in vacuum. These two figures of merit, xi and n(g), should be taken into account when quantifying the robustness of topological and conventional (nontopological) slow-light transport at the nanoscale. Otherwise, any claim on a better performance of topological guided light over a conventional one is not justified.
引用
收藏
页数:6
相关论文
共 38 条
  • [21] Two-dimensional photonic-bandgap structures operating at near infrared wavelengths
    Krauss, TF
    DeLaRue, RM
    Brand, S
    [J]. NATURE, 1996, 383 (6602) : 699 - 702
  • [22] Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million
    Lai, Y.
    Pirotta, S.
    Urbinati, G.
    Gerace, D.
    Minkov, M.
    Savona, V.
    Badolato, A.
    Galli, M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (24)
  • [23] All-Si valley-Hall photonic topological insulator
    Ma, Tzuhsuan
    Shvets, Gennady
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [24] ONE-PARAMETER SCALING OF LOCALIZATION LENGTH AND CONDUCTANCE IN DISORDERED-SYSTEMS
    MACKINNON, A
    KRAMER, B
    [J]. PHYSICAL REVIEW LETTERS, 1981, 47 (21) : 1546 - 1549
  • [25] Disorder-Induced Multiple Scattering in Photonic-Crystal Waveguides
    Mazoyer, S.
    Hugonin, J. P.
    Lalanne, P.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (06)
  • [26] Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides
    Monat, Christelle
    Corcoran, Bill
    Ebnali-Heidari, Majid
    Grillet, Christian
    Eggleton, Benjamin J.
    White, Thomas P.
    O'Faolain, Liam
    Krauss, Thomas. F.
    [J]. OPTICS EXPRESS, 2009, 17 (04): : 2944 - 2953
  • [27] Orazbayev B., 2019, NANOPHOTONICS, V8, P8
  • [28] Topological photonics
    Ozawa, Tomoki
    Price, Hannah M.
    Amo, Alberto
    Goldman, Nathan
    Hafezi, Mohammad
    Lu, Ling
    Rechtsman, Mikael C.
    Schuster, David
    Simon, Jonathan
    Zilberberg, Oded
    Carusotto, Iacopo
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (01)
  • [29] Valley filter and valley valve in graphene
    Rycerz, A.
    Tworzydlo, J.
    Beenakker, C. W. J.
    [J]. NATURE PHYSICS, 2007, 3 (03) : 172 - 175
  • [30] Theory of intrinsic propagation losses in topological edge states of planar photonic crystals
    Sauer, Erik
    Vasco, Juan Pablo
    Hughes, Stephen
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):