Quantifying the Robustness of Topological Slow Light

被引:76
作者
Arregui, Guillermo [1 ,2 ]
Gomis-Bresco, Jordi [1 ,2 ]
Sotomayor-Torres, Clivia M. [1 ,2 ,3 ]
David Garcia, Pedro [1 ,2 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[2] BIST, Campus UAB, Barcelona 08193, Spain
[3] ICREA Inst Cataluna Recerca & Estudis Avancats, Barcelona 08010, Spain
基金
欧盟地平线“2020”;
关键词
LOCALIZATION;
D O I
10.1103/PhysRevLett.126.027403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The backscattering mean free path xi, the average ballistic propagation length along a waveguide, quantifies the resistance of slow light against unwanted imperfections in the critical dimensions of the nanostructure. This figure of merit determines the crossover between acceptable slow-light transmission affected by minimal scattering losses and a strong backscattering-induced destructive interference when the waveguide length L exceeds xi. Here, we calculate the backscattering mean free path for a topological photonic waveguide for a specific and determined amount of disorder and, equally relevant, for a fixed value of the group index n(g) which is the slowdown factor of the group velocity with respect to the speed of light in vacuum. These two figures of merit, xi and n(g), should be taken into account when quantifying the robustness of topological and conventional (nontopological) slow-light transport at the nanoscale. Otherwise, any claim on a better performance of topological guided light over a conventional one is not justified.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [2] Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide
    Arcari, M.
    Sollner, I.
    Javadi, A.
    Hansen, S. Lindskov
    Mahmoodian, S.
    Liu, J.
    Thyrrestrup, H.
    Lee, E. H.
    Song, J. D.
    Stobbe, S.
    Lodahl, P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (09)
  • [3] Slow light in photonic crystals
    Baba, Toshihiko
    [J]. NATURE PHOTONICS, 2008, 2 (08) : 465 - 473
  • [4] Slow light engineering in photonic crystals
    Baba, Toshihiko
    Mori, Daisuke
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (09) : 2659 - 2665
  • [5] Efficient All-Optical Switching Using Slow Light within a Hollow Fiber
    Bajcsy, M.
    Hofferberth, S.
    Balic, V.
    Peyronel, T.
    Hafezi, M.
    Zibrov, A. S.
    Vuletic, V.
    Lukin, M. D.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [6] Tutorial: Computing Topological Invariants in 2D Photonic Crystals
    Blanco de Paz, Maria
    Devescovi, Chiara
    Giedke, Geza
    Jose Saenz, Juan
    Vergniory, Maia G.
    Bradlyn, Barry
    Bercioux, Dario
    Garcia-Etxarri, Aitzol
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
  • [7] EXPONENTIAL LOCALIZATION IN ONE DIMENSIONAL DISORDERED-SYSTEMS
    CARMONA, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1982, 49 (01) : 191 - 213
  • [8] Slow-light-enhanced gain in active photonic crystal waveguides
    Ek, Sara
    Lunnemann, Per
    Chen, Yaohui
    Semenova, Elizaveta
    Yvind, Kresten
    Mork, Jesper
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [9] Lower bound for the spatial extent of localized modes in photonic-crystal waveguides with small random imperfections
    Faggiani, Remi
    Baron, Alexandre
    Zang, Xiaorun
    Lalouat, Loic
    Schulz, Sebastian A.
    O'Regan, Bryan
    Vynck, Kevin
    Cluzel, Benoit
    de Fornel, Frederique
    Krauss, Thomas F.
    Lalanne, Philippe
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Conductance distributions in quasi-one-dimensional disordered wires -: art. no. 246403
    Froufe-Pérez, LS
    García-Mochales, P
    Serena, PA
    Mello, PA
    Sáenz, JJ
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (24) : 246403 - 246403