Karhunen-Loeve expansion of Spartan spatial random fields

被引:9
作者
Tsantili, Ivi C. [1 ]
Hristopulos, Dionissios T. [1 ]
机构
[1] Tech Univ Crete, Sch Mineral Resources Engn, Geostat Lab, Khania 73100, Greece
关键词
Karhunen-Loeve expansion; Spartan covariance; Dimension reduction; Oscillating covariance; Differentiable random field; RESPONSE-EXCITATION; COVARIANCE FUNCTIONS; SIMULATION; MODELS; JOINT;
D O I
10.1016/j.probengmech.2015.12.002
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Random fields (RFs) are important tools for modeling space-time processes and data. The Karhunen-Loeve (K-L) expansion provides optimal bases which reduce the dimensionality of random field representations. However, explicit expressions for K-L expansions only exist for a few, one-dimensional, two-parameter covariance functions. In this paper we derive the K-L expansion of the so-called Spartan spatial random fields (SSRFs). SSRF covariance functions involve three parameters including a rigidity coefficient eta(1) a scale coefficient, and a characteristic length. SSRF covariances include both monotonically decaying and damped oscillatory functions; the latter are obtained for negative values of eta(1). We obtain the eigenvalues and eigenfunctions of the SSRF K-L expansion by solving the associated homogeneous Fredholm equation of the second kind which leads to a fourth order linear ordinary differential equation. We investigate the properties of the solutions, we use the derived K-L base to simulate SSRF realizations, and we calculate approximation errors due to truncation of the K-L series. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:132 / 147
页数:16
相关论文
共 50 条
[31]   Karhunen-Loeve expansion for multi-correlated stochastic processes [J].
Cho, H. ;
Venturi, D. ;
Karniadakis, G. E. .
PROBABILISTIC ENGINEERING MECHANICS, 2013, 34 :157-167
[32]   Distributed parameter model updating using the Karhunen-Loeve expansion [J].
Adhikari, S. ;
Friswell, M. I. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (02) :326-339
[33]   A method of generating a random optical field using the Karhunen-Loeve expansion to simulate atmospheric turbulence [J].
Khonina, S. N. ;
Volotovskiy, S. G. ;
Kirilenko, M. S. .
COMPUTER OPTICS, 2020, 44 (01) :53-+
[34]   Bayesian estimation of Karhunen-Loeve expansions; A random subspace approach [J].
Chowdhary, Kenny ;
Najm, Habib N. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 319 :280-293
[35]   Karhunen-Loeve Expansion for the Discrete Transient Heat Transfer Equation [J].
Fahlaoui, Tarik .
JOURNAL OF MATHEMATICAL STUDY, 2018, 51 (01) :26-56
[36]   Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme [J].
Phoon, KK ;
Huang, SP ;
Quek, ST .
PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (03) :293-303
[37]   Karhunen-Loeve expansion based on an analytical solution over a bounding box domain [J].
Basmaji, A. A. ;
Dannert, M. M. ;
Bensel, F. ;
Fleury, R. M. N. ;
Fau, A. ;
Nackenhorst, U. .
PROBABILISTIC ENGINEERING MECHANICS, 2023, 74
[38]   Faster computation of the Karhunen-Loeve expansion using its domain independence property [J].
Pranesh, Srikara ;
Ghosh, Debraj .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 :125-145
[39]   On spectral representation method and Karhunen-Loeve expansion in modelling construction material properties [J].
Chen, Elton J. ;
Ding, Lieyun ;
Liu, Yong ;
Ma, Xianfeng ;
Skibniewski, Miroslaw J. .
ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2018, 18 (03) :768-783
[40]   Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion [J].
Phoon, KK ;
Huang, HW ;
Quek, ST .
PROBABILISTIC ENGINEERING MECHANICS, 2005, 20 (02) :188-198