The restarted Arnoldi method applied to iterative linear system solvers for the computation of rightmost eigenvalues

被引:18
|
作者
Meerbergen, K [1 ]
Roose, D [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN, DEPT COMP SCI, B-3001 HEVERLEE, BELGIUM
关键词
Arnoldi's method; matrix transformations for eigenvalue problems; iterative linear system solvers and preconditioners;
D O I
10.1137/S0895479894274255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the computation of a few eigenvalues of Ax = mu Bx, the restarted Arnoldi method is often applied to transformations, e.g., the shift-invert transformation. Such transformations typically require the solution of linear systems. This paper presents an analysis of the application of the transformation (M(A) - alpha M(B))(-1)(A - lambda B) to Arnoldi's method where alpha and lambda are parameters and M(A) - alpha M(B) is some approximation to A - alpha B. In fact, (M(A) - alpha M(B))(-1) corresponds to an iterative linear system solver for the system (A - alpha B)x = b. The transformation is an alternative to the shift-invert transformation (A - alpha B)B--1 when direct system solvers are not available or not feasible. The restarted Amoldi method is analyzed in the case of detection of the rightmost eigenvalues of real nonsymmetric matrices. The method is compared to Davidson's method by use of numerical examples.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] A reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line
    Meerbergen, Karl
    Vandebril, Raf
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) : 2828 - 2844
  • [2] PageRank Computation Using a Multiple Implicitly Restarted Arnoldi Method for Modeling Epidemic Spread
    Zifan Liu
    Nahid Emad
    Soufian Ben Amor
    Michel Lamure
    International Journal of Parallel Programming, 2015, 43 : 1028 - 1053
  • [3] PageRank Computation Using a Multiple Implicitly Restarted Arnoldi Method for Modeling Epidemic Spread
    Liu, Zifan
    Emad, Nahid
    Ben Amor, Soufian
    Lamure, Michel
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2015, 43 (06) : 1028 - 1053
  • [4] A Chain Method for Preconditioned Iterative Linear Solvers for Power System Matrices
    Grant, Lisa L.
    Crow, Mariesa L.
    Cheng, Maggie X.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (01) : 166 - 173
  • [5] A library of distributed iterative linear system solvers
    Eijkhout, V
    APPLIED NUMERICAL MATHEMATICS, 1995, 19 (03) : 359 - 373
  • [6] A Novel Arnoldi Method to Calculate the Critical Eigenvalues in Power System
    Li Hongzhong
    Jin Yixiong
    You Daning
    Zhu Zhenhua
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 4194 - +
  • [7] A Comparative Study of Two Iterative Linear Solvers Applied to Semiconductor Device Simulation
    Seoane, Natalia
    Garcia-Loureiro, Antonio
    Aldegunde, Manuel
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 218 - 221
  • [8] Iterative system solvers for the frequency analysis of linear mechanical systems
    Feriani, A
    Perotti, F
    Simoncini, V
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) : 1719 - 1739
  • [9] Computation of linear and nonlinear stationary states of photonic structures using modern iterative solvers
    Salgueiro, Jose Ramon
    Olivieri, David
    Michinel, Humberto
    OPTICAL AND QUANTUM ELECTRONICS, 2007, 39 (03) : 239 - 260
  • [10] Computation of linear and nonlinear stationary states of photonic structures using modern iterative solvers
    José Ramón Salgueiro
    David Olivieri
    Humberto Michinel
    Optical and Quantum Electronics, 2007, 39 : 239 - 260