QuickMIRSeq: a pipeline for quick and accurate quantification of both known miRNAs and isomiRs by jointly processing multiple samples from microRNA sequencing

被引:40
作者
Zhao, Shanrong [1 ]
Gordon, William [1 ]
Du, Sarah [1 ]
Zhang, Chi [1 ]
He, Wen [1 ]
Xi, Li [1 ]
Mathur, Sachin [2 ]
Agostino, Michael [2 ]
Paradis, Theresa [1 ]
von Schack, David [1 ]
Vincent, Michael [3 ]
Zhang, Baohong [1 ]
机构
[1] Early Clin Dev, Pfizer Worldwide Res & Dev, Cambridge, MA 02139 USA
[2] Business Technol, Pfizer Worldwide Res & Dev, Andover, MA 01810 USA
[3] Pfizer Worldwide Res & Dev, I&I Res Unit, Cambridge, MA 02139 USA
关键词
D O I
10.1186/s12859-017-1601-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Genome-wide miRNA expression data can be used to study miRNA dysregulation comprehensively. Although many open-source tools for microRNA (miRNA)-seq data analyses are available, challenges remain in accurate miRNA quantification from large-scale miRNA-seq dataset. We implemented a pipeline called QuickMIRSeq for accurate quantification of known miRNAs and miRNA isoforms (isomiRs) from multiple samples simultaneously. Results: QuickMIRSeq considers the unique nature of miRNAs and combines many important features into its implementation. First, it takes advantage of high redundancy of miRNA reads and introduces joint mapping of multiple samples to reduce computational time. Second, it incorporates the strand information in the alignment step for more accurate quantification. Third, reads potentially arising from background noise are filtered out to improve the reliability of miRNA detection. Fourth, sequences aligned to miRNAs with mismatches are remapped to a reference genome to further reduce false positives. Finally, QuickMIRSeq generates a rich set of QC metrics and publication-ready plots. Conclusions: The rich visualization features implemented allow end users to interactively explore the results and gain more insights into miRNA-seq data analyses. The high degree of automation and interactivity in QuickMIRSeq leads to a substantial reduction in the time and effort required for miRNA-seq data analysis.
引用
收藏
页数:14
相关论文
共 48 条
[1]   Prioritizing and selecting likely novel miRNAs from NGS data [J].
Backes, Christina ;
Meder, Benjamin ;
Hart, Martin ;
Ludwig, Nicole ;
Leidinger, Petra ;
Vogel, Britta ;
Galata, Valentina ;
Roth, Patrick ;
Menegatti, Jennifer ;
Graesser, Friedrich ;
Ruprecht, Klemens ;
Kahraman, Mustafa ;
Grossmann, Thomas ;
Haas, Jan ;
Meese, Eckart ;
Keller, Andreas .
NUCLEIC ACIDS RESEARCH, 2016, 44 (06)
[2]   miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy [J].
Baras, Alexander S. ;
Mitchell, Christopher J. ;
Myers, Jason R. ;
Gupta, Simone ;
Weng, Lien-Chun ;
Ashton, John M. ;
Cornish, Toby C. ;
Pandey, Akhilesh ;
Halushka, Marc K. .
PLOS ONE, 2015, 10 (11)
[3]   Circulating miR-21-5p and miR-148a-3p as emerging non-invasive biomarkers in thymic epithelial tumors [J].
Bellissimo, Teresa ;
Russo, Emanuele ;
Ganci, Federica ;
Vico, Carmen ;
Sacconi, Andrea ;
Longo, Flavia ;
Vitolo, Domenico ;
Anile, Marco ;
Disio, Daniele ;
Marino, Mirella ;
Blandino, Giovanni ;
Venuta, Federico ;
Fazi, Francesco .
CANCER BIOLOGY & THERAPY, 2016, 17 (01) :79-82
[4]   Oasis: online analysis of small RNA deep sequencing data [J].
Capece, Vincenzo ;
Vizcaino, Julio C. Garcia ;
Vidal, Ramon ;
Rahman, Raza-Ur ;
Centeno, Tonatiuh Pena ;
Shomroni, Orr ;
Suberviola, Irantzu ;
Fischer, Andre ;
Bonn, Stefan .
BIOINFORMATICS, 2015, 31 (13) :2205-2207
[5]   Expression profiling of microRNAs by deep sequencing [J].
Creighton, Chad J. ;
Reid, Jeffrey G. ;
Gunaratne, Preethi H. .
BRIEFINGS IN BIOINFORMATICS, 2009, 10 (05) :490-497
[6]  
Di Martino MT, 2016, EXPER OPIN THER TAR, P1
[7]  
Elkayam E, 2012, CELL, V150, P100, DOI 10.1016/j.cell.2012.05.017
[8]   Drosha processing controls the specificity and efficiency of global microRNA expression [J].
Feng, Yong ;
Zhang, Xiaoxiao ;
Song, Qingfeng ;
Li, Tongbin ;
Zeng, Yan .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2011, 1809 (11-12) :700-707
[9]   Discovering microRNAs from deep sequencing data using miRDeep [J].
Friedlaender, Marc R. ;
Chen, Wei ;
Adamidi, Catherine ;
Maaskola, Jonas ;
Einspanier, Ralf ;
Knespel, Signe ;
Rajewsky, Nikolaus .
NATURE BIOTECHNOLOGY, 2008, 26 (04) :407-415
[10]   miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades [J].
Friedlaender, Marc R. ;
Mackowiak, Sebastian D. ;
Li, Na ;
Chen, Wei ;
Rajewsky, Nikolaus .
NUCLEIC ACIDS RESEARCH, 2012, 40 (01) :37-52