The area theorem of the Berry phase for the time-dependent externally driven system

被引:9
作者
Yang, LG
Yan, FL
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Hebei Normal Univ, Dept Phys, Shijiazhuang 050016, Peoples R China
关键词
D O I
10.1016/S0375-9601(00)00004-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We cast the Berry phase for the time-dependent externally driven system in terms of the areas on the amplitude complex plane. A direct geometric interpretation and calculation approach are given to the Berry phase as the twice arithmetic summation of areas surrounded by the amplitudes for the basis eigenstates. Using this method, the Berry phase For the two-spin system coupled by the uniaxial exchange interaction is calculated. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:326 / 330
页数:5
相关论文
共 16 条
[2]   Quasiadiabatic time evolution, avoided level crossings, and Berry's phase [J].
Fox, RF ;
Jung, P .
PHYSICAL REVIEW A, 1998, 57 (04) :2339-2346
[3]   Macroscopic measurement of resonant magnetization tunneling in high-spin molecules [J].
Friedman, JR ;
Sarachik, MP ;
Tejada, J ;
Ziolo, R .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3830-3833
[4]   FORMALLY EXACT SOLUTION AND GEOMETRIC PHASE FOR THE SPIN-J SYSTEM [J].
GAO, XC ;
XU, JB ;
QIAN, TZ .
PHYSICS LETTERS A, 1991, 152 (09) :449-452
[5]   Evidence for resonant tunneling of magnetization in Mn-12 acetate complex [J].
Hernandez, JM ;
Zhang, XX ;
Luis, F ;
Tejada, J ;
Friedman, JR ;
Sarachik, MP ;
Ziolo, R .
PHYSICAL REVIEW B, 1997, 55 (09) :5858-5865
[6]   Time-dependent quantum systems and the invariant Hermitian operator [J].
Lai, YZ ;
Liang, JQ ;
MullerKirsten, HJW ;
Zhou, JG .
PHYSICAL REVIEW A, 1996, 53 (05) :3691-3693
[7]   CYCLIC QUANTUM EVOLUTION AND AHARONOV-ANANDAN GEOMETRIC PHASES IN SU(2) SPIN-COHERENT STATES [J].
LAYTON, E ;
HUANG, YH ;
CHU, SI .
PHYSICAL REVIEW A, 1990, 41 (01) :42-48
[8]  
Li BZ, 1996, SCI CHINA SER A, V39, P963
[9]   THE GEOMETRIC PHASE IN MOLECULAR-SYSTEMS [J].
MEAD, CA .
REVIEWS OF MODERN PHYSICS, 1992, 64 (01) :51-85
[10]  
Shapere A., 1989, GEOMETRIC PHASES PHY