Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity

被引:121
|
作者
Rezazadeh, Hadi [1 ]
Osman, M. S. [2 ]
Eslami, Mostafa [3 ]
Ekici, Mehmet [4 ]
Sonmezoglu, Abdullah [4 ]
Asma, Mir [5 ]
Othman, W. A. M. [5 ]
Wong, B. R. [5 ]
Mirzazadeh, Mohammad [6 ]
Zhou, Qin [7 ]
Biswas, Anjan [8 ,9 ,10 ]
Belic, Milivoj [11 ]
机构
[1] Amol Univ Special Modern Technol, Fac Modern Technol Engn, Amol, Iran
[2] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[3] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[4] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[5] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[6] Univ Guilan, Fac Engn & Technol, Dept Engn Sci, Rudsar Vajargah 4489163157, Iran
[7] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[8] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[9] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13318, Saudi Arabia
[10] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[11] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2018年 / 164卷
关键词
Solitons; Integrability; Perturbation; Conformable fractional derivative; TRAVELING-WAVE SOLUTIONS; 1ST INTEGRAL METHOD; PERTURBATION; SYSTEM; EQUATIONS;
D O I
10.1016/j.ijleo.2018.03.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies fractional temporal evolution of optical solitons with quadratic cubic nonlinearity that comes with a few perturbation terms. Khalil's conformable fractional derivative as well as Liu's extended trial function scheme are applied to retrieve these soli ton solutions. The results are applicable to mitigate Internet bottleneck that is a growing problem in telecommunications industry. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:84 / 92
页数:9
相关论文
共 50 条
  • [41] Optical soliton perturbation with quadratic-cubic nonlinearity by traveling wave hypothesis
    Biswas, Anjan, 2017, National Institute of Optoelectronics (11): : 9 - 10
  • [42] STOCHASTIC PERTURBATION OF OPTICAL SOLITONS WITH QUADRATIC-CUBIC NONLINEAR REFRACTIVE INDEX
    Khan, Salam
    OPTIK, 2020, 212
  • [43] Optical solitons with fractional temporal evolution in fiber bragg gratings with generalized anti-cubic nonlinearity by the fractional Riccati method
    Altwaty, A. A.
    Hassan, Saleh M.
    Masry, Bader R. K.
    RESULTS IN PHYSICS, 2021, 22
  • [44] Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrödinger equation via two techniques
    Md. Tarikul Islam
    Mst. Armina Aktar
    J. F. Gómez-Aguilar
    J. Torres-Jiménez
    Optical and Quantum Electronics, 2021, 53
  • [45] Biswas-Milovic Model with Quadratic-Cubic Law and Its Optical Solitons
    Korpinar, Zeliha
    Inc, Mustafa
    JOURNAL OF ADVANCED PHYSICS, 2018, 7 (03) : 387 - 394
  • [46] Highly dispersive optical solitons with quadratic-cubic law by exp-function
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Belic, Milivoj R.
    OPTIK, 2019, 186 (431-435): : 431 - 435
  • [47] Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 1990 - 1998
  • [48] Transformation and interactions among solitons in metamaterials with quadratic-cubic nonlinearity and inter-model dispersion
    Rizvi, Syed T. R.
    Seadawy, Aly R.
    Farah, Nighat
    Ahmed, Sarfaraz
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [49] Highly dispersive optical solitons with quadratic-cubic law by F-expansion
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Belic, Milivoj R.
    OPTIK, 2019, 182 : 930 - 943
  • [50] Optical solitons and modulation instability analysis to the quadratic-cubic nonlinear Schrodinger equation
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (01): : 20 - 33