On Estimation and Inference in Latent Structure Random Graphs

被引:18
作者
Athreya, Avanti [1 ]
Minh Tang [2 ]
Park, Youngser [3 ]
Priebe, Carey E. [4 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, 3400 N Charles St, Baltimore, MD 21218 USA
[2] North Carolina State Univ, Dept Stat, 2311 Stinson Dr, Raleigh, NC 27607 USA
[3] Johns Hopkins Univ, Ctr Imaging Sci, 3400 N Charles St, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Dept Appl Math, 3400 N Charles St, Baltimore, MD 21218 USA
关键词
Latent structure random graphs; manifold learning; spectral graph inference; efficiency; GEOMETRY; MODELS;
D O I
10.1214/20-STS787
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define a latent structure random graph as a random dot product graph (RDPG) in which the latent position distribution incorporates both probabilistic and geometric constraints, delineated by a family of underlying distributions on some fixed Euclidean space, and a structural support submanifold from which are drawn the latent positions for the graph. For a one-dimensional latent structure model with known structural support, we extend existing results on the consistency of spectral estimates in RDPGs to demonstrate that the parameters of the underlying distribution can be efficiently estimated. We describe how to estimate or learn the structural support in cases where it is unknown, with a focus on graphs with latent positions along the Hardy-Weinberg curve. Finally, we use the latent structural model formulation to address a hitherto-open question in neuroscience on the bilateral homology of the Drosophila left and right hemisphere connectome.
引用
收藏
页码:68 / 88
页数:21
相关论文
共 27 条
[1]  
Airoldi EM, 2008, J MACH LEARN RES, V9, P1981
[2]  
Athreya A, 2016, SANKHYA SER A, V78, P1
[3]  
Athreya A, 2018, J MACH LEARN RES, V18
[4]  
BICKEL P. J., 2016, TEXTS STAT SCI SERIE, V2
[5]   The phase transition in inhomogeneous random graphs [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (01) :3-122
[6]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[7]   THE TWO-TO-INFINITY NORM AND SINGULAR SUBSPACE GEOMETRY WITH APPLICATIONS TO HIGH-DIMENSIONAL STATISTICS [J].
Cape, Joshua ;
Minh Tang ;
Priebe, Carey E. .
ANNALS OF STATISTICS, 2019, 47 (05) :2405-2439
[8]   Vertex nomination [J].
Coppersmith, Glen .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (02) :144-153
[9]  
DIACONIS P., 2008, Rendiconti di Matematica, V28, P33
[10]   The complete connectome of a learning and memory centre in an insect brain [J].
Eichler, Katharina ;
Li, Feng ;
Litwin-Kumar, Ashok ;
Park, Youngser ;
Andrade, Ingrid ;
Chneider-Mizell, Casey M. S. ;
Saumweber, Timo ;
Huser, Annina ;
Eschbach, Claire ;
Gerber, Bertram ;
Fetter, Richard D. ;
Truman, James W. ;
Priebe, Carey E. ;
Abbott, L. F. ;
Thum, Andreas S. ;
Zlatic, Marta ;
Cardona, Albert .
NATURE, 2017, 548 (7666) :175-+