Pressure-retarded osmosis for power generation from salinity gradients: is it viable?

被引:279
|
作者
Straub, Anthony P. [1 ]
Deshmukh, Akshay [1 ]
Elimelech, Menachem [1 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
HOLLOW-FIBER MEMBRANES; INTERNAL CONCENTRATION POLARIZATION; FILM COMPOSITE MEMBRANES; OSMOTIC POWER; REVERSE ELECTRODIALYSIS; SEAWATER DESALINATION; ENERGY GENERATION; THERMODYNAMIC ANALYSIS; CONCENTRATED BRINES; OPERATING PRESSURES;
D O I
10.1039/c5ee02985f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The enormous potential of harvesting energy from salinity gradients has been discussed for decades, and pressure-retarded osmosis (PRO) is being increasingly investigated as a method to extract this energy. Despite advancements in membranes and system components, questions still remain regarding the overall viability of the PRO process. Here, we review PRO focusing on the net energy extractable and the ultimate feasibility of the most widely explored configurations. We define the maximum energy that can be obtained from the process, quantify losses and energetic costs that will reduce the net extractable energy, and explain how membrane modules can be improved. We then explore the potential of three configurations of PRO: systems designed to control mixing where rivers meet the sea, power plants that utilize the high concentration gradients available from hypersaline solutions, and PRO systems incorporated into reverse osmosis desalination plants to reduce electricity requirements. We conclude by considering the overall outlook of the process and identifying the most pressing challenges for future research.
引用
收藏
页码:31 / 48
页数:18
相关论文
共 50 条
  • [21] Pressure-retarded osmosis for enhanced oil recovery
    Janson, Arnold
    Dardor, Dareen
    Al Maas, Mashael
    Minier-Matar, Joel
    Abdel-Wahab, Ahmed
    Adham, Samer
    DESALINATION, 2020, 491
  • [22] Generating Osmotic Power Using Waste Effluents for Pressure-Retarded Osmosis
    AL-Musawi, Osamah A. H.
    Mohammad, Abdul Wahab
    Mahood, Hameed B.
    Ang, Wei Lun
    Mahmoudi, Ebrahim
    Kadhum, Abdul Amir H.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 4295 - 4311
  • [23] Does Pressure-Retarded Osmosis Help Reverse Osmosis in Desalination?
    Parra, Abdon
    Noriega, Mario
    Yokoyama, Lidia
    Bagajewicz, Miguel
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (11) : 4366 - 4374
  • [24] Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation
    Kim, Yu Chang
    Kim, Young
    Oh, Dongwook
    Lee, Kong Hoon
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (06) : 2966 - 2973
  • [25] A Feasibility Study of Pressure-Retarded Osmosis Power Generation System Based on Measuring Permeation Volume Using Reverse Osmosis Membrane
    Enomoto, Hiroshi
    Fujitsuka, Masashi
    Hasegawa, Tomoyasu
    Kuwada, Masatoshi
    Tanioka, Akihiko
    Minagawa, Mie
    ELECTRICAL ENGINEERING IN JAPAN, 2010, 173 (02) : 8 - 20
  • [26] Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane
    Choi, Wook
    Bae, Harim
    Lee, Hyung-Keun
    Lee, Jonghwi
    Kim, Jong Hak
    Park, Chul Ho
    POLYMER-KOREA, 2015, 39 (02) : 317 - 322
  • [27] Salinity gradient energy generation by pressure retarded osmosis: A review
    Gonzales, Ralph Rolly
    Abdel-Wahab, Ahmed
    Adham, Samer
    Han, Dong Suk
    Phuntsho, Sherub
    Suwaileh, Wafa
    Hilal, Nidal
    Shon, Ho Kyong
    DESALINATION, 2021, 500 (500)
  • [28] Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process
    Zhao, Die Ling
    Das, Subhabrata
    Chung, Tai-Shung
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (23) : 14016 - 14023
  • [29] Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review
    Kim, Jihye
    Jeong, Kwanho
    Park, Myoung Jun
    Shon, Ho Kyong
    Kim, Joon Ha
    ENERGIES, 2015, 8 (10): : 11821 - 11845
  • [30] Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review
    Sharma, Mukesh
    Das, Pranjal P.
    Chakraborty, Arun
    Purkait, Mihir K.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 49