The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond

被引:36
作者
Demlow, Shannon Nicley [1 ]
Rechenberg, Robert [2 ]
Grotjohn, Timothy [1 ,2 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Fraunhofer USA Inc, Ctr Coatings & Laser Applicat, E Lansing, MI 48824 USA
关键词
Microwave plasma chemical vapor deposition (MPCVD); Boron doped diamond; Doping efficiency; Defect morphology; Infrared spectroscopy; FILMS;
D O I
10.1016/j.diamond.2014.06.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The substrate growth temperature dependence of the plasma gas-phase to solid-phase doping efficiency in single crystal, boron doped diamond (BDD) deposition is investigated. Single crystal diamond (SCD) is grown by microwave plasma assisted chemical vapor deposition (MPACVD) on high pressure, high temperature (HPHT) type Ib substrates. Samples are grown at substrate temperatures of 850-950 degrees C for each of five doping concentration levels, to determine the effect of the growth temperature on the doping efficiency and defect morphology. The substrate temperature during growth is shown to have a significant effect on the grown sample defect morphology, and a temperature dependence of the doping efficiency is also shown. The effect of the growth rate on the doping efficiency is discussed, and the ratio of the boron concentration in the gas phase to the flux of carbon incorporated into the solid diamond phase is shown to be a more predictive measure of the resulting boron concentration than the gas phase boron to carbon ratio that is more commonly reported. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 12 条
[1]   Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices? [J].
Achard, J. ;
Issaoui, R. ;
Tallaire, A. ;
Silva, F. ;
Barjon, J. ;
Jomard, F. ;
Gicquel, A. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (09) :1651-1658
[2]   Thick boron doped diamond single crystals for high power electronics [J].
Achard, J. ;
Silva, F. ;
Issaoui, R. ;
Brinza, O. ;
Tallaire, A. ;
Schneider, H. ;
Isoird, K. ;
Ding, H. ;
Kone, S. ;
Pinault, M. A. ;
Jomard, F. ;
Gicquel, A. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (02) :145-152
[3]   High growth rate homoepitaxial diamond deposition on off-axis substrates [J].
Bauer, T ;
Schreck, M ;
Sternschulte, H ;
Stritzker, B .
DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) :266-271
[4]  
Davies G., 1977, CHEM PHYS CARBON, P1
[5]  
Demlow S.N., 2011, MRS P, V1282
[6]   Boron-related infra-red absorption in homoepitaxial diamond films [J].
Gheeraert, E ;
Deneuville, A ;
Mambou, J .
DIAMOND AND RELATED MATERIALS, 1998, 7 (10) :1509-1512
[7]   Hillock-free homoepitaxial diamond (100) films grown at high methane concentrations [J].
Hamada, M ;
Teraji, T ;
Ito, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2005, 44 (1-7) :L216-L219
[8]   An experimental study of high pressure synthesis of diamond films using a microwave cavity plasma reactor [J].
Kuo, KP ;
Asmussen, J .
DIAMOND AND RELATED MATERIALS, 1997, 6 (09) :1097-1105
[9]   Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model [J].
May, P. W. ;
Harvey, J. N. ;
Allan, N. L. ;
Richley, J. C. ;
Mankelevich, Yu. A. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (01)
[10]   Misorientation-angle dependence of boron incorporation into (001)-oriented chemical-vapor-deposited (CVD) diamond [J].
Ogura, Masahiko ;
Kato, Hiromitsu ;
Makino, Toshiharu ;
Okushi, Hideyo ;
Yamasaki, Satoshi .
JOURNAL OF CRYSTAL GROWTH, 2011, 317 (01) :60-63