Hidden k-Space Magnetoelectric Multipoles in Nonmagnetic Ferroelectrics

被引:11
作者
Bhowal, Sayantika [1 ]
Collins, Stephen P. [2 ]
Spaldin, Nicola A. [1 ]
机构
[1] Swiss Fed Inst Technol, Mat Theory, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Diamond Light Source Ltd, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
关键词
MAGNETIC COMPTON-SCATTERING; ROOM-TEMPERATURE; SPIN-DENSITY; X-RAYS; ELECTRONS; PROFILE; PBTIO3; CHARGE;
D O I
10.1103/PhysRevLett.128.116402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In condensed matter systems, the electronic degrees of freedom are often entangled to form complex composites, known as hidden orders, which give rise to unusual properties, while escaping detection in conventional experiments. Here we demonstrate the existence of hidden k-space magnetoelectric multipoles in nonmagnetic systems with broken space-inversion symmetry. These k-space magnetoelectric multipoles are reciprocal to the real-space charge dipoles associated with the broken inversion symmetry. Using the prototypical ferroelectric PbTiO3 as an example, we show that their origin is a spin asymmetry in momentum space resulting from the broken space inversion symmetry associated with the ferroelectric polarization. In PbTiO3, the k-space spin asymmetry corresponds to a pure k-space magnetoelectric toroidal moment, which can be detected using magnetic Compton scattering, an established tool for probing magnetism in ferromagnets or ferrimagnets with a net spin polarization, which has not been exploited to date for nonmagnetic systems. In particular, the k-space magnetoelectric toroidal moment combined with the spin-orbit interaction manifest in an antisymmetric magnetic Compton profile that can be reversed using an electric field. Our work suggests an experimental route to directly measuring and tuning hidden k-space magnetoelectric multipoles via specially designed magnetic Compton scattering measurements.
引用
收藏
页数:6
相关论文
共 66 条
[1]   Magnetic Compton Scattering: A Reliable Probe to Investigate Magnetic Properties [J].
Ahuja, B. L. .
SOLID STATE PHYSICS, VOL 57, 2013, 1512 :26-29
[2]   Muffin-tin orbitals of arbitrary order [J].
Andersen, OK ;
Saha-Dasgupta, T .
PHYSICAL REVIEW B, 2000, 62 (24) :16219-16222
[3]   Rashba-like spin-orbit and strain effects in tetragonal PbTiO3 [J].
Arras, R. ;
Gosteau, J. ;
Zhao, H. J. ;
Paillard, C. ;
Yang, Y. ;
Bellaiche, L. .
PHYSICAL REVIEW B, 2019, 100 (17)
[4]   Spin-resolved Compton scattering study of RuSr2GdCu2O8 [J].
Banfield, ZF ;
Duffy, JA ;
Taylor, JW ;
Steer, CA ;
Bebb, A ;
Cooper, MJ ;
Blaauw, L ;
Sbenton-Taylor, C ;
Ruiz-Bustos, R .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (36) :5533-5540
[5]  
Bhowal Sayantika, 2021, Open Res Eur, V1, P132, DOI 10.12688/openreseurope.13863.2
[6]   Revealing hidden magnetoelectric multipoles using Compton scattering [J].
Bhowal, Sayantika ;
Spaldin, Nicola A. .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[7]   Dynamics of the phase-change material GeTe across the structural phase transition [J].
Chatterji, T. ;
Rols, S. ;
Wdowik, U. D. .
FRONTIERS OF PHYSICS, 2019, 14 (02)
[8]   On the possibility of using X-ray Compton scattering to study magnetoelectrical properties of crystals [J].
Collins, S. P. ;
Laundy, D. ;
Connolley, T. ;
van der Laan, G. ;
Fabrizi, F. ;
Janssen, O. ;
Cooper, M. J. ;
Ebert, H. ;
Mankovsky, S. .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2016, 72 :197-205
[9]   A quantum theory of the scattering of x-rays by light elements [J].
Compton, AH .
PHYSICAL REVIEW, 1923, 21 (05) :0483-0502
[10]   A short history of magnetic Compton scattering [J].
Cooper, M. J. ;
Shenton-Taylor, C. ;
Duffy, J. A. ;
Steer, C. A. ;
Blaauw, L. V. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 580 (01) :1-7