Zeolite Membranes for Hydrogen and Water Separation under Harsh Conditions

被引:11
作者
Guenther, Christiane [1 ]
Richter, Hannes [1 ]
Voigt, Ingolf [1 ]
机构
[1] Fraunhofer IKTS Inst Ceram Technol & Syst, D-07629 Hermsdorf, Germany
来源
ICHEAP-11: 11TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-4 | 2013年 / 32卷
关键词
D O I
10.3303/CET1332328
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To increase the efficiency of power plants, coal can be processed by integrated gasification combined cycle (IGCC) to H-2 and CO2. To minimize efficiency losses during gas separation, nanoporous membranes can be used advantageously for the separation of H-2 and CO2. This process has to be carried out under hydrothermal process conditions (40 to 400 degrees C, 1 to 40 bar and 0.4 to 35 % water). The same membranes can be used for water separation applications like in the Fischer-Tropsch synthesis (FTS). Sodalite (SOD) exhibits pore sizes in the range of the kinetic diameter of H-2 (0.29 nm), but is normally not hydrothermal stable. To increase the hydrothermal stability, the sodalite (H-SOD) was doped with sulphur (S-SOD). S-SOD is stable at 800 degrees C in dry atmosphere and 270 degrees C in 30 % water and approximately 40 bar. S-SOD membranes were synthesized on tubular alumina supports via a seeding procedure and subsequent hydrothermal synthesis. Crack free intergrown SOD-layers were found for membranes prepared with low concentrated seeding solutions. These membranes show a thickness of about 2 mu m. Single gas permeation measurements gave a H-2/CO2-permselectivity of 12 at room temperature for the best membranes. Variations of the seeding process lead to stable membranes up to at least 300 degrees C. These membranes showed an increasing selectivity with increasing temperature.
引用
收藏
页码:1963 / 1968
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2012, WORLD EN OUTL
[2]   Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading [J].
Brunetti, Adele ;
Caravella, Alessio ;
Drioli, Enrico ;
Barbieri, Giuseppe .
CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (07) :1238-1248
[3]   Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN [J].
Czyperek, M. ;
Zapp, P. ;
Bouwmeester, H. J. M. ;
Modigell, M. ;
Ebert, K. ;
Voigt, I. ;
Meulenberg, W. A. ;
Singheiser, L. ;
Stoever, D. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) :149-159
[4]   MEM-BRAIN gas separation membranes for zero-emission fossil power plants [J].
Czyperek, M. ;
Zapp, P. ;
Bouwmeester, H. J. M. ;
Modigell, M. ;
Peinemann, K. -V. ;
Voigt, I. ;
Meulenberg, W. A. ;
Singheiser, L. ;
Stoever, D. .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :303-310
[5]  
Gunther C., 2011, NETWORK YOUNG MEMBRA
[6]   Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation [J].
Khajavi, Sheida ;
Kapteijn, Freek ;
Jansen, Jacobus C. .
JOURNAL OF MEMBRANE SCIENCE, 2007, 299 (1-2) :63-72
[7]   Thermostability of hydroxy sodalite in view of membrane applications [J].
Khajavi, Sheida ;
Sartipi, Sina ;
Gascon, Jorge ;
Jansen, Jacobus C. ;
Kapteijn, Freek .
MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 132 (03) :510-517
[8]   Performance of a catalytic membrane reactor for the Fischer-Tropsch synthesis [J].
Khassin, AA ;
Sipatrov, AG ;
Yurieva, TM ;
Chermashentseva, GK ;
Rudina, NA ;
Parmon, VN .
CATALYSIS TODAY, 2005, 105 (3-4) :362-366
[9]   SYNTHESIS OF ULTRAMARINE FROM SYNTHETIC MOLECULAR-SIEVES [J].
KOWALAK, S ;
PAWLOWSKA, M ;
MILUSKA, M ;
STROZYK, M ;
KANIA, J ;
PRZYSTAJKO, W .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 101 (2-3) :179-185
[10]  
Lattner J. R., 2002, FUEL CHEM DIVISION P, V47, P816