Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA

被引:179
|
作者
Liang, Xiquan [1 ]
Potter, Jason [1 ]
Kumar, Shantanu [1 ]
Ravinder, Namritha [1 ]
Chesnut, Jonathan D. [1 ]
机构
[1] Thermo Fisher Sci, 5781 Allen Way, Carlsbad, CA 92008 USA
关键词
CRISPR; Cas9; gRNA; Genome editing; Knock-in; Homologous recombination; STEM-CELLS; GENERATION; OLIGODEOXYNUCLEOTIDES; MUTATIONS;
D O I
10.1016/j.jbiotec.2016.11.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
While CRISPR-based gene knock out in mammalian cells has proven to be very efficient, precise insertion of genetic elements via the cellular homology directed repair (HDR) pathway remains a rate-limiting step to seamless genome editing. Under the conditions described here, we achieved up to 56% targeted integration efficiency with up to a six-nucleotide insertion in HEK293 cells. In induced pluripotent stem cells (iPSCs), we achieved precise genome editing rates of up to 45% by co-delivering the Cas9 RNP and donor DNA. In addition, the use of a short double stranded DNA oligonucleotide with 3' overhangs allowed integration of a longer FLAG epitope tag along with a restriction site at rates of up to 50%. We propose a model that favors the design of donor DNAs with the change as close to the cleavage site as possible. For small changes such as SNPs or short insertions, asymmetric single stranded donor molecules with 30 base homology arms 3' to the insertion/repair cassette and greater than 40 bases of homology on the 5' end seems to be favored. For larger insertions such as an epitope tag, a dsDNA donor with protruding 3' homology arms of 30 bases is favored. In both cases, protecting the ends of the donor DNA with phosphorothioate modifications improves the editing efficiency. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
引用
收藏
页码:136 / 146
页数:11
相关论文
共 50 条
  • [1] Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing
    Denes, Christopher E.
    Cole, Alexander J.
    Aksoy, Yagiz Alp
    Li, Geng
    Neely, Graham Gregory
    Hesselson, Daniel
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [2] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [3] Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein
    Ma, Yuanwu
    Chen, Wei
    Zhang, Xu
    Yu, Lei
    Dong, Wei
    Pan, Shuo
    Gao, Shan
    Huang, Xingxu
    Zhang, Lianfeng
    RNA BIOLOGY, 2016, 13 (07) : 605 - 612
  • [4] Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing
    Hasanzadeh, Akbar
    Noori, Hamid
    Jahandideh, Atefeh
    Moghaddam, Niloofar Haeri
    Mousavi, Seyede Mahtab Kamrani
    Nourizadeh, Helena
    Saeedi, Sara
    Karimi, Mahdi
    Hamblin, Michael R.
    ACS APPLIED BIO MATERIALS, 2022, 5 (02) : 413 - 437
  • [5] Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica
    Li, Wenjing
    Li, Xuan
    Wang, Chunyang
    Huo, Guanzhong
    Zhang, Xinru
    Yu, Jintai
    Yu, Xiaoxiao
    Li, Jing
    Zhang, Chao
    Zhao, Jianjun
    Li, Yan
    Li, Jun
    ABIOTECH, 2024, 5 (02) : 202 - 208
  • [6] Mosaicism in CRISPR/Cas9-mediated genome editing
    Mehravar, Maryam
    Shirazi, Abolfazl
    Nazari, Mahboobeh
    Banan, Mehdi
    DEVELOPMENTAL BIOLOGY, 2019, 445 (02) : 156 - 162
  • [7] CRISPR/Cas9-mediated genome editing in plants
    Liu, Xuejun
    Xie, Chuanxiao
    Si, Huaijun
    Yang, Jinxiao
    METHODS, 2017, 121 : 94 - 102
  • [8] gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing
    Easmin, Farhana
    Hassan, Naim
    Sasano, Yu
    Ekino, Keisuke
    Taguchi, Hisataka
    Harashima, Satoshi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2019, 128 (03) : 373 - 378
  • [9] Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing
    Su, Liuru
    Shi, Chenggang
    Huang, Xin
    Wang, Yiquan
    Li, Guang
    GENES, 2020, 11 (11) : 1 - 9
  • [10] In Vivo Dissection Of A CRISPR/Cas9-Mediated Precise Genome Editing Mechanism
    Dey, Sanchita S.
    VanDusen, Nathan J.
    CIRCULATION RESEARCH, 2023, 133