Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast

被引:29
作者
Nguyen Ba, Alex N. [1 ,13 ]
Lawrence, Katherine R. [2 ,3 ,4 ]
Rego-Costa, Artur [1 ]
Gopalakrishnan, Shreyas [1 ,5 ]
Temko, Daniel [6 ,7 ,8 ]
Michor, Franziska [6 ,7 ,8 ,9 ,10 ,11 ]
Desai, Michael M. [1 ,2 ,3 ,12 ]
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, NSF, Simons Ctr Math & Stat Anal Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
[4] MIT, Dept Phys, Cambridge, MA USA
[5] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA USA
[6] Dana Farber Canc Inst, Dept Data Sci, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[8] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA USA
[9] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA USA
[10] Ludwig Ctr Harvard, Boston, MA USA
[11] Broad Inst & Harvard, Cambridge, MA USA
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Univ Toronto Mississauga, Dept Biol, Mississauga, ON, Canada
来源
ELIFE | 2022年 / 11卷
基金
美国国家科学基金会; 美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
quantitative trait loci; pleiotropy; epistasis; polygenic traits; S; cerevisiae; SINGLE-NUCLEOTIDE RESOLUTION; SACCHAROMYCES-CEREVISIAE; MISSING HERITABILITY; MODEL SELECTION; GENE DISRUPTION; LINEAR-MODEL; DNA; DISSECTION; PREDICTION; SEQUENCE;
D O I
10.7554/eLife.73983
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.
引用
收藏
页数:83
相关论文
共 124 条
[91]  
Petit PX, 1996, CYTOMETRY, V23, P28, DOI 10.1002/(SICI)1097-0320(19960101)23:1<28::AID-CYTO5>3.0.CO
[92]  
2-I
[93]   Tn5 transposase and tagmentation procedures for massively scaled sequencing projects [J].
Picelli, Simone ;
Bjorklund, Asa K. ;
Reinius, Bjorn ;
Sagasser, Sven ;
Winberg, Gosta ;
Sandberg, Rickard .
GENOME RESEARCH, 2014, 24 (12) :2033-2040
[94]  
Plass M., 2020, YEAST INTRON STRUCTU
[95]   Common polygenic variation contributes to risk of schizophrenia and bipolar disorder [J].
Purcell, Shaun M. ;
Wray, Naomi R. ;
Stone, Jennifer L. ;
Visscher, Peter M. ;
O'Donovan, Michael C. ;
Sullivan, Patrick F. ;
Sklar, Pamela ;
Ruderfer, Douglas M. ;
McQuillin, Andrew ;
Morris, Derek W. ;
O'Dushlaine, Colm T. ;
Corvin, Aiden ;
Holmans, Peter A. ;
Macgregor, Stuart ;
Gurling, Hugh ;
Blackwood, Douglas H. R. ;
Craddock, Nick J. ;
Gill, Michael ;
Hultman, Christina M. ;
Kirov, George K. ;
Lichtenstein, Paul ;
Muir, Walter J. ;
Owen, Michael J. ;
Pato, Carlos N. ;
Scolnick, Edward M. ;
St Clair, David ;
Williams, Nigel M. ;
Georgieva, Lyudmila ;
Nikolov, Ivan ;
Norton, N. ;
Williams, H. ;
Toncheva, Draga ;
Milanova, Vihra ;
Thelander, Emma F. ;
Sullivan, Patrick ;
Kenny, Elaine ;
Quinn, Emma M. ;
Choudhury, Khalid ;
Datta, Susmita ;
Pimm, Jonathan ;
Thirumalai, Srinivasa ;
Puri, Vinay ;
Krasucki, Robert ;
Lawrence, Jacob ;
Quested, Digby ;
Bass, Nicholas ;
Crombie, Caroline ;
Fraser, Gillian ;
Kuan, Soh Leh ;
Walker, Nicholas .
NATURE, 2009, 460 (7256) :748-752
[96]   Resampling QTL Effects in the QTL Sign Test Leads to Incongruous Sensitivity to Variance in Effect Size [J].
Rice, Daniel P. ;
Townsend, Jeffrey P. .
G3-GENES GENOMES GENETICS, 2012, 2 (08) :905-911
[97]   Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin-like protein Hkr1 but not Msb2 [J].
Rodriguez-Pena, Jose M. ;
Diez-Muniz, Sonia ;
Bermejo, Clara ;
Nombela, Cesar ;
Arroyo, Javier .
FEBS LETTERS, 2013, 587 (22) :3675-3680
[98]   Improvement of the lytic properties of a β-1,3-glucanase by directed evolution [J].
Salazar, Oriana ;
Basso, Caterina ;
Barba, Paola ;
Orellana, Claudia ;
Asenjo, Juan A. .
MOLECULAR BIOTECHNOLOGY, 2006, 33 (03) :211-219
[99]   Deep Learning for Predicting Complex Traits in Spring Wheat Breeding Program [J].
Sandhu, Karansher S. ;
Lozada, Dennis N. ;
Zhang, Zhiwu ;
Pumphrey, Michael O. ;
Carter, Arron H. .
FRONTIERS IN PLANT SCIENCE, 2021, 11
[100]   LYTICASE - ENDOGLUCANASE AND PROTEASE ACTIVITIES THAT ACT TOGETHER IN YEAST-CELL LYSIS [J].
SCOTT, JH ;
SCHEKMAN, R .
JOURNAL OF BACTERIOLOGY, 1980, 142 (02) :414-423