Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrodinger Equations

被引:9
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
来源
ANNALES HENRI POINCARE | 2017年 / 18卷 / 03期
关键词
LONG-RANGE SCATTERING; HARTREE-EQUATIONS; GLOBAL EXISTENCE; SPACE DIMENSION;
D O I
10.1007/s00023-016-0502-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the large time asymptotics of solutions to the Cauchy problem. We use the factorization technique similar to that developed for the Schrodinger equation.
引用
收藏
页码:1025 / 1054
页数:30
相关论文
共 33 条
[1]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[3]   WELL-POSEDNESS AND ILL-POSEDNESS FOR THE CUBIC FRACTIONAL SCHRODINGER EQUATIONS [J].
Cho, Yonggeun ;
Hwang, Gyeongha ;
Kwon, Soonsik ;
Lee, Sanghyuk .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) :2863-2880
[4]   REMARKS ON SOME DISPERSIVE ESTIMATES [J].
Cho, Yonggeun ;
Ozawa, Tohru ;
Xia, Suxia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1121-1128
[5]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[6]  
Delort PJM, 2001, ANN SCI ECOLE NORM S, V34, P1
[7]  
Fedoryuk MV., 1987, ASYMPTOTICS INTEGRAL
[8]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[9]   Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrodinger equation [J].
Guo Boling ;
Han Yongqian ;
Xin Jie .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) :468-477
[10]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389