Nonlinear pseudo-differential equations defined by elliptic symbols on Lp(n) and the fractional Laplacian

被引:4
作者
Bravo, Mauricio [1 ]
Prado, Humberto [2 ]
Reyes, Enrique G. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-V, Valparaiso, Chile
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Casilla 307 Correo 2, Santiago, Chile
关键词
D O I
10.1007/s11856-019-1854-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop an L-p((n))-functional calculus appropriated for interpreting non-classical symbols of the form a(-), and for proving existence of solutions to nonlinear pseudo-differential equations of the form [1 + a(-)](s/2)(u) = V (, u). We use the theory of Fourier multipliers for constructing suitable domains sitting inside L-p((n)) on which the formal operator appearing in the above equation can be rigorously defined, and we prove existence of solutions belonging to these domains. We include applications of the theory to equations of physical interest involving the fractional Laplace operator such as (generalizations of) the (focusing) Allen-Cahn, Benjamin-Ono and nonlinear Schrodinger equations.
引用
收藏
页码:269 / 301
页数:33
相关论文
共 38 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[3]  
Ambrosio V, 2015, ADV NONLINEAR STUD, V15, P395
[4]   UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE [J].
AMICK, CJ ;
TOLAND, JF .
ACTA MATHEMATICA, 1991, 167 (1-2) :107-126
[5]  
[Anonymous], 2016, LECT NOTES UNIONE MA
[6]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[7]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[8]  
Barnaby N., 2008, J HIGH ENERGY PHYS
[9]   A new formulation of the initial value problem for nonlocal theories [J].
Barnaby, Neil .
NUCLEAR PHYSICS B, 2011, 845 (01) :1-29
[10]   NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIANS II: EXISTENCE, UNIQUENESS, AND QUALITATIVE PROPERTIES OF SOLUTIONS [J].
Cabre, Xavier ;
Sire, Yannick .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) :911-941