Electricity generation in microbial fuel cells using neutral red as an electronophore

被引:428
|
作者
Park, DH
Zeikus, JG [1 ]
机构
[1] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Microbiol, E Lansing, MI 48824 USA
[3] MBI Int, Lansing, MI 48909 USA
关键词
D O I
10.1128/AEM.66.4.1292-1297.2000
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH, fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Ln microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sec-age sludge (i.e,, a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells, Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells.
引用
收藏
页码:1292 / 1297
页数:6
相关论文
共 50 条
  • [1] Electricity generation using microbial fuel cells
    Mohan, Y.
    Kumar, S. Manoj Muthu
    Das, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) : 423 - 426
  • [2] Electricity generation using white and red wine lees in air cathode microbial fuel cells
    Sciarria, Tommy Pepe
    Merlino, Giuseppe
    Scaglia, Barbara
    D'Epifanio, Alessandra
    Mecheri, Barbara
    Borin, Sara
    Licoccia, Silvia
    Adani, Fabrizio
    JOURNAL OF POWER SOURCES, 2015, 274 : 393 - 399
  • [3] Electricity generation using membrane and salt bridge microbial fuel cells
    Min, BK
    Cheng, SA
    Logan, BE
    WATER RESEARCH, 2005, 39 (09) : 1675 - 1686
  • [4] Electricity generation in microbial fuel cells: Using humic acids as a mediator
    Zhang, Yifeng
    Huang, Liping
    Chen, Jingwen
    Qiao, Xianliang
    Cai, Xiyun
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S474 - S475
  • [5] Electricity generation from swine wastewater using microbial fuel cells
    Min, B
    Kim, JR
    Oh, SE
    Regan, JM
    Logan, BE
    WATER RESEARCH, 2005, 39 (20) : 4961 - 4968
  • [6] Electricity generation by the microbial fuel cells using carbon nanotube as the anode
    Liang, Peng
    Fan, Ming-Zhi
    Cao, Xiao-Xin
    Huang, Xia
    Peng, Yin-Ming
    Wang, Shuo
    Gong, Qian-Ming
    Liang, Ji
    Huanjing Kexue/Environmental Science, 2008, 29 (08): : 2356 - 2360
  • [7] Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation
    Zain, S. M.
    Roslani, N. S.
    Hashim, R.
    Anuar, N.
    Suja, F.
    Daud, W. R. W.
    Basri, N. E. A.
    SAINS MALAYSIANA, 2011, 40 (09): : 993 - 997
  • [8] Tubular microbial fuel cells for efficient electricity generation
    Rabaey, K
    Clauwaert, P
    Aelterman, P
    Verstraete, W
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (20) : 8077 - 8082
  • [9] Effects of Mevastatin on Electricity Generation in Microbial Fuel Cells
    Akul, Naki Burak
    Cebecioglu, Rumeysa
    Akagunduz, Dilan
    Bermek, Hakan
    Ozdemir, Murat
    Catal, Tunc
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2021, 30 (06): : 5407 - 5412
  • [10] Electricity generation from rapeseed straw hydrolysates using microbial fuel cells
    Jablonska, Milena A.
    Rybarczyk, Maria K.
    Lieder, Marek
    BIORESOURCE TECHNOLOGY, 2016, 208 : 117 - 122