Stability of solitary waves for derivative nonlinear Schrodinger equation

被引:62
作者
Colin, Mathieu [1 ]
Ohta, Masahito
机构
[1] Univ Bordeaux 1, Cours Liberat 451, F-33405 Talence, France
[2] Saitama Univ, Fac Sci, Dept Math, Urawa, Saitama 3388570, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2006年 / 23卷 / 05期
关键词
solitary wave; orbital stability; DNLS;
D O I
10.1016/j.anihpc.2005.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the so-called Derivative Nonlinear Schrodinger equation. This equation is known to have a two-parameter family of solitary waves solutions. We prove orbital stability of these particular solutions for the whole range of parameters values by using variational methods. (c) 2006 Elsevier SAS. All rights reserved.
引用
收藏
页码:753 / 764
页数:12
相关论文
共 27 条
[11]   THE INITIAL-VALUE PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION IN THE ENERGY SPACE [J].
HAYASHI, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (07) :823-833
[12]   FINITE-ENERGY SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS OF DERIVATIVE TYPE [J].
HAYASHI, N ;
OZAWA, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) :1488-1503
[13]   ON THE LOWEST EIGENVALUE OF THE LAPLACIAN FOR THE INTERSECTION OF 2 DOMAINS [J].
LIEB, EH .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :441-448
[14]   MODIFIED NONLINEAR SCHRODINGER EQUATION FOR ALFVEN WAVES PROPAGATING ALONG MAGNETIC-FIELD IN COLD-PLASMAS [J].
MIO, K ;
OGINO, T ;
MINAMI, K ;
TAKEDA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 41 (01) :265-271
[15]   MODULATIONAL INSTABILITY OF HYDROMAGNETIC-WAVES PARALLEL TO MAGNETIC-FIELD [J].
MJOLHUS, E .
JOURNAL OF PLASMA PHYSICS, 1976, 16 (DEC) :321-334
[16]   ASYMPTOTIC PROFILES OF BLOW-UP SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION WITH CRITICAL POWER NONLINEARITY [J].
NAWA, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) :557-586
[17]  
OHTA M, 1995, ANN I H POINCARE-PHY, V63, P111
[18]  
Ohta M., 1994, Journal of Dynamics and Differential Equations, V6, P325, DOI 10.1007/BF02218533
[19]  
Ohta M., 1995, Kodai Math. J., V18, P68
[20]  
Ohta M., 1995, DIFFER INTEGRAL EQU, V8, P1775