Facile synthesis of rutile TiO2/carbon nanosheet composite from MAX phase for lithium storage

被引:23
作者
Guan, Zhaoruxin [1 ]
Wang, Xiaoxue [1 ]
Li, Tingting [1 ]
Zhu, Qizhen [1 ]
Jia, Mengqiu [1 ]
Xu, Bin [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2/C; Composite; Anode; Lithium ion battery; MAX; TRANSITION-METAL OXIDES; ONE-STEP SYNTHESIS; ION BATTERY; ANODE MATERIALS; IN-SITU; ENHANCED PERFORMANCE; TIO2; NANOCRYSTALS; TITANIUM CARBIDE; GRAPHITIC CARBON; MXENE;
D O I
10.1016/j.jmst.2019.04.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium oxide (TiO2), with excellent cycling stability and low volume expansion, is a promising anode material for lithium-ion battery (LIB). which suffers from low electrical conductivity and poor rate capability. Combining nano-sized TiO2 with conductive materials is proved an efficient method to improve its electrochemical properties. Here, rutile TiO2/carbon nanosheet was obtained by calcinating MAX (Ti3AlC2) and Na2CO3 together and water-bathing with HCI. The lamellar carbon atoms in MAX are converted to 2D carbon nanosheets with urchin-like rutile TiO2 anchored on. The unique architecture can offer plentiful active sites, shorten the ion diffusion distance and improve the conductivity. The composite exhibits a high reversible capacity of 247 mA h g(-1), excellent rate performance (38 mA h g(-1) at 50 C) and stable cycling performance (0.014% decay per cycle during 2000 cycles) for lithium storage. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:1977 / 1981
页数:5
相关论文
共 43 条
[1]   Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes [J].
Acevedo-Pena, Prospero ;
Haro, Marta ;
Rincon, Marina E. ;
Bisquert, Juan ;
Garcia-Belmonte, Germa .
JOURNAL OF POWER SOURCES, 2014, 268 :397-403
[2]   Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANO ENERGY, 2017, 34 :249-256
[3]   H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Hedhili, Mohamed N. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANOSCALE, 2016, 8 (14) :7580-7587
[4]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[5]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[6]   Impact of nanosizing on lithiated rutile TiO2 [J].
Borghols, Wouter J. H. ;
Wagemaker, Marnix ;
Lafont, Ugo ;
Kelder, Erik M. ;
Mulder, Fokko M. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2949-2955
[7]   Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation [J].
Brumbarov, J. ;
Vivek, J. P. ;
Leonardi, S. ;
Valero-Vidal, C. ;
Portenkirchner, E. ;
Kunze-Liebhaeuser, J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16469-16477
[8]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[9]   Chemically Bonded TiO2-Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries [J].
Etacheri, Vinodkumar ;
Yourey, Joseph E. ;
Bartlett, Bart M. .
ACS NANO, 2014, 8 (02) :1491-1499
[10]   Mesoporous Titania Microspheres with Highly Tunable Pores as an Anode Material for Lithium Ion Batteries [J].
Fischer, Michael G. ;
Hua, Xiao ;
Wilts, Bodo D. ;
Gunkel, Ilja ;
Bennett, Thomas M. ;
Steiner, Ullrich .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (27) :22388-22397