THE CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS OF QUASI-PERIODIC FORCED SCHRODINGER EQUATION

被引:14
作者
Jiao, Lei [1 ]
Wang, Yiqian [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Hamiltonian systems; Schrodinger equation; KAM; normal form; NONLINEAR-WAVE EQUATIONS; BOUNDARY-CONDITIONS; KAM THEOREM; TORI;
D O I
10.3934/cpaa.2009.8.1585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct small amplitude quasi-periodic solutions for one dimensional nonlinear Schrodinger equation iu(t) = u(xx) - mu - f(beta t, x)vertical bar u vertical bar(2)u with the boundary conditions u(t, 0) = u(t, a pi) = 0, -infinity < t < infinity, where m is real and f(beta t, x) is real analytic and quasi-periodic on t satisfying the non-degeneracy condition lim(T ->infinity) 1/T integral(T)(0) f(beta t, x)dt equivalent to f(0) = const., 0 not equal f(0) is an element of R, with beta is an element of R(b) a fixed Diophantine vector.
引用
收藏
页码:1585 / 1606
页数:22
相关论文
共 17 条
[11]   Quasi-periodic solutions for a nonlinear wave equation [J].
Poschel, J .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (02) :269-296
[12]  
Poschel J., 1996, Ann. Sc. Norm. Super. Pisa, V23, P119
[13]   TIME PERIODIC SOLUTIONS OF NONLINEAR WAVE EQUATIONS [J].
RABINOWITZ, PH .
MANUSCRIPTA MATHEMATICA, 1971, 5 (02) :165-+
[14]  
RABINOWITZ PH, 1968, ADV DIFFERENTIAL INT
[15]   PERIODIC AND QUASI-PERIODIC SOLUTIONS OF NONLINEAR-WAVE EQUATIONS VIA KAM THEORY [J].
WAYNE, CE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :479-528
[16]   Persistence of Louver-dimensional tori under the first Melnikov's non-resonance condition [J].
Xu, JX ;
You, JG .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (10) :1045-1067
[17]   A KAM theorem with applications to partial differential equations of higher dimensions [J].
Yuan, Xiaoping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (01) :97-137