Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix

被引:85
作者
Francois, B. [1 ,2 ]
Hingray, B. [1 ,2 ]
Raynaud, D. [1 ,2 ]
Borga, M. [3 ]
Creutin, J. D. [1 ,2 ]
机构
[1] Univ Grenoble Alpes, LTHE, F-38041 Grenoble, France
[2] CNRS, LTHE, F-38041 Grenoble, France
[3] Univ Padua, Dept Land Environm Agr & Forestry, Padua, Italy
关键词
Climate-related energy; Penetration; Energy mix; Complementarity; MODEL; STORAGE; SOLAR; WIND;
D O I
10.1016/j.renene.2015.10.064
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The penetration rate of Climate Related Energy sources like solar-power, wind-power and hydro-power source is potentially low as a result of the large space and time variability of their driving climatic variables. Increased penetration rates can be achieved with mixes of sources. Optimal mixes, i.e. obtained with the optimal share for each source, are being identified for a number of regions worldwide. However, they often consider wind and solar power only. Based on 33 years of daily data (1980-2012) for a set of 12 European regions, we re-estimate the optimal mix when wild run-of-the-river energy is included in the solar/wind mix. It is found to be highly region dependent but the highest shares are often obtained for run-of-the-river, ranging from 35% to 65% in Belarus and England. High solar shares (>40%) are found in southern countries but solar shares drop to less than 15% in northern countries. Wind shares range from 10 to 35% with the exception of Norway where it reaches 50%. These results put in perspective the optimal 60%-40% wind/solar mix currently used for Europe. For all regions, including run-of-the-river in the mix allows increasing the penetration rate of CREs (from 1 to 8% points). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:686 / 696
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2012, ISESCO J SCI TECHNOL
[2]  
[Anonymous], TECHNICAL REPORT
[3]   The Twentieth Century Reanalysis Project [J].
Compo, G. P. ;
Whitaker, J. S. ;
Sardeshmukh, P. D. ;
Matsui, N. ;
Allan, R. J. ;
Yin, X. ;
Gleason, B. E., Jr. ;
Vose, R. S. ;
Rutledge, G. ;
Bessemoulin, P. ;
Broennimann, S. ;
Brunet, M. ;
Crouthamel, R. I. ;
Grant, A. N. ;
Groisman, P. Y. ;
Jones, P. D. ;
Kruk, M. C. ;
Kruger, A. C. ;
Marshall, G. J. ;
Maugeri, M. ;
Mok, H. Y. ;
Nordli, O. ;
Ross, T. F. ;
Trigo, R. M. ;
Wang, X. L. ;
Woodruff, S. D. ;
Worley, S. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (654) :1-28
[4]  
Duffie J.A., 1991, Solar Engineering of Thermal Processes, Vsecond
[5]  
ECF, 2010, EUR CLIM FDN, V1
[6]   Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy [J].
Francois, B. ;
Borga, M. ;
Creutin, J. D. ;
Hingray, B. ;
Raynaud, D. ;
Sauterleute, J. F. .
RENEWABLE ENERGY, 2016, 86 :543-553
[7]   Integrating hydropower and intermittent climate-related renewable energies: a call for hydrology [J].
Francois, B. ;
Borga, M. ;
Anquetin, S. ;
Creutin, J. D. ;
Engeland, K. ;
Favre, A. C. ;
Hingray, B. ;
Ramos, M. H. ;
Raynaud, D. ;
Renard, B. ;
Sauquet, E. ;
Sauterleute, J. F. ;
Vidal, J. P. ;
Warland, G. .
HYDROLOGICAL PROCESSES, 2014, 28 (21) :5465-5468
[8]  
GSE, 2011, STAT REP REN EN POW, P64
[9]   Variations in Discharge Volumes for Hydropower Generation in Switzerland [J].
Haenggi, Pascal ;
Weingartner, Rolf .
WATER RESOURCES MANAGEMENT, 2012, 26 (05) :1231-1252
[10]   Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation [J].
Heide, Dominik ;
Greiner, Martin ;
von Bremen, Lueder ;
Hoffmann, Clemens .
RENEWABLE ENERGY, 2011, 36 (09) :2515-2523