Structural and magnetic properties of Sr0.5Co0.5Fe2O4 nanoferrite

被引:10
作者
Abdallah, Hafiz M. I. [1 ]
Moyo, Thomas [1 ]
Ezekiel, Itegbeyogene P. [1 ]
Osman, Nadir S. E. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, ZA-4000 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Glycol-thermal; Nanoferrite; Hyperfine interaction; Exchange bias; Spin-freezing; Coercivity;
D O I
10.1016/j.jmmm.2014.04.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nanoparticle Sr0.5Co0.5Fe2O4 powder was produced via glycol-thermal process from high-purity metal chlorides at a low reaction temperature of 200 degrees C. The phase identification of the as-synthesized powder reveals cubic spine! structure with an average crystallite size of 8 nm. Room-temperature Mossbauer spectra for the as-synthesized sample and samples annealed at different temperatures show different local environments of tetrahedral and octahedral coordinated iron cations. Magnetic properties of the as-synthesized sample and samples annealed at 300, 400, 450, 500, 600, 700 and 800 degrees C have been investigated using a vibrating sample magnetometer at room-temperature in applied magnetic fields of up to about 1.4 T. A substantial increase in coercive field at 300 K from 0.28 kOe to 2.897 kOe was obtained for the as-synthesized and annealed sample at 800 C. Magnetic field dependence of magnetization curves measured on a mini-cryogen free VTI system operating at a base temperature of 2 K in magnetic fields of up to 5 T have been investigated. The variation of the saturation magnetization as a function of temperature follows modified Bloch's law. Coercive field increased from about 0.28 kOe and 1.04 kOe at 300 K to 11.14 kOe and 10.43 kOe at 2 K for the as-synthesized sample and sample annealed at 500 degrees C, respectively because of spin-freezing. The effect of exchange bias and Kneller's law are used to account for the temperature dependence of coercive fields. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 11 条
[1]  
Abdallah H.M.I., 2012, J SUPERCOND NOV MAGN, V26, P1361
[2]   Structural and magnetic studies of (Mg, Sr)0.2Mn0.1Co0.7Fe2O4 nanoferrites [J].
Abdallah, Hafiz M. I. ;
Moyo, Thomas .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 562 :156-163
[3]   Magnetic properties of nanosized Mg0.5Mn0.5(RE)0.1Fe1.9O4 ferrites synthesized by glycol-thermal method [J].
Abdallah, Hafiz M. I. ;
Moyo, T. ;
Msomi, J. Z. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 332 :123-129
[4]   Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method [J].
Gao, Ruo-Rui ;
Zhang, Yue ;
Yu, Wei ;
Xiong, Rui ;
Shi, Jing .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (16) :2534-2538
[5]   Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles [J].
Huang, X. H. ;
Ding, J. F. ;
Zhang, G. Q. ;
Hou, Y. ;
Yao, Y. P. ;
Li, X. G. .
PHYSICAL REVIEW B, 2008, 78 (22)
[6]   Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4 [J].
Manova, E ;
Kunev, B ;
Paneva, D ;
Mitov, I ;
Petrov, L ;
Estournès, C ;
D'Orléans, C ;
Rehspringer, JL ;
Kurmoo, M .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5689-5696
[7]   Synthesis and magnetic properties of Mg0.2Cr1.8-xFexO3 nanoparticles [J].
Mbela, Kalengay ;
Moyo, T. ;
Msomi, J. Z. ;
Ozturk, M. ;
Akdogan, N. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 330 :159-162
[8]   Exchange bias in nanostructures [J].
Nogués, J ;
Sort, J ;
Langlais, V ;
Skumryev, V ;
Suriñach, S ;
Muñoz, JS ;
Baró, MD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 422 (03) :65-117
[9]   SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene [J].
Pardeshi, Satish K. ;
Pawar, Ravindra Y. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2011, 334 (1-2) :35-43
[10]   The role of magnetic interactions in exchange bias properties of MnFe2O4@γ-Fe2O3 core/shell nanoparticles [J].
Silva, F. G. ;
Aquino, R. ;
Tourinho, F. A. ;
Stepanov, V. I. ;
Raikher, Yu L. ;
Perzynski, R. ;
Depeyrot, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (28)