Scaling and non-standard matching theorems

被引:14
作者
Talagrand, Michel [1 ]
机构
[1] 23 Rue Louis Pouey, F-92800 Puteaux La Defense, France
关键词
D O I
10.1016/j.crma.2018.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the standard Gaussian measure mu on R-2. Consider independent r.v.s (X-i)i <= N distributed according to mu, and an independent copy (Y-i)(i <= N) of these r.v.s. We prove that, for some number C and N large, we have (log N)(2)/C <= E inf(pi)Sigma(i <= N)d(Xi,Y pi(i))(2 )<= C(log N)(2), where the infimum is over all permutations pi of {1,..., N}. The striking point of this result is the factor (logN)(2). Indeed, if instead of mu we consider the uniform distribution on the unit square, it is well known that the proper factor is logN. The upper bound was proved by Michel Ledoux (2017) [3]. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:692 / 695
页数:4
相关论文
共 5 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]  
Ambrosio L., 2016, PROBAB THEORY RELAT
[3]  
LEDOUX M., 2017, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), V457, P226
[4]  
Talagrand M., UPPER LOWER BOUNDS S
[5]  
YUKICH J, 1992, PROG PROBAB, V30, P55