BASIC RESULTS OF FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS

被引:48
作者
Bahrouni, Sabri [1 ]
Ounaies, Hichem [1 ]
Tavares, Leandro S. [2 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir 5019, Tunisia
[2] Univ Fed Cariri, Ctr Ciencias & Tecnol, BR-63048080 Juazeiro Do Norte, CE, Brazil
关键词
Fractional Orlicz-Sobolev space; fractional M-Laplacian; nonlocal problems; existence of solution; DIFFERENTIAL-OPERATORS; POSITIVE SOLUTIONS; LAPLACIAN; EQUATIONS;
D O I
10.12775/TMNA.2019.111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the interplay between the Orlicz- Sobolev spaces L-M and W(1,M )and the fractional Sobolev spaces W-s,W- p. More precisely, we give some qualitative properties of a new fractional Orlicz-Sobolev space W-s,W-M, where s is an element of (0, 1) and M is a Young function. We also study a related non-local operator, which is a fractional version of the nonhomogeneous M-Laplace operator. As an application, we prove existence of a weak solution for a non-local problem involving the new fractional M-Laplacian operator.
引用
收藏
页码:681 / 695
页数:15
相关论文
共 37 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]  
[Anonymous], 2016, LECT NOTES UNIONE MA
[3]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[4]  
[Anonymous], 2015, MONOGRAPHS RES NOTES
[5]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[6]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389
[7]   Comparison and sub-supersolution principles for the fractional p(x)-Laplacian [J].
Bahrouni, Anouar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :1363-1372
[8]   TRUDINGER-MOSER TYPE INEQUALITY AND EXISTENCE OF SOLUTION FOR PERTURBED NON-LOCAL ELLIPTIC OPERATORS WITH EXPONENTIAL NONLINEARITY [J].
Bahrouni, Anouar .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (01) :243-252
[9]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[10]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008